高二數學(xué)知識點(diǎn)總結集合15篇
總結是對某一階段的工作、學(xué)習或思想中的經(jīng)驗或情況進(jìn)行分析研究的書(shū)面材料,它可以明確下一步的工作方向,少走彎路,少犯錯誤,提高工作效益,讓我們抽出時(shí)間寫(xiě)寫(xiě)總結吧。你所見(jiàn)過(guò)的總結應該是什么樣的?以下是小編為大家整理的高二數學(xué)知識點(diǎn)總結,歡迎閱讀與收藏。
高二數學(xué)知識點(diǎn)總結1
1.萬(wàn)能公式令tan(a/2)=t sina=2t/(1+t^2) cosa=(1-t^2)/(1+t^2) tana=2t/(1-t^2)
2.輔助角公式 asint+bcost=(a^2+b^2)^(1/2)sin(t+r) cosr=a/[(a^2+b^2)^(1/2)] sinr=b/[(a^2+b^2)^(1/2)] tanr=b/a
3.三倍角公式 sin(3a)=3sina-4(sina)^3 cos(3a)=4(cosa)^3-3cosa tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)] sina*cosb=[sin(a+b)+sin(a-b)]/2cosa*sinb=[sin(a+b)-sin(a-b)]/2 cosa*cosb=[cos(a+b)+cos(a-b)]/2 sina*sinb=-[cos(a+b)-cos(a-b)]/2 sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2] cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2] cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2] 向量公式: 1.單位向量:?jiǎn)挝幌蛄縜0=向量a/|向量a| 2.P(x,y) 那么 向量OP=x 向量i+y 向量j |向量OP|=根號(x 平方+y 平方) 3.P1(x1,y1) P2(x2,y2) 那么向量P1P2={x2-x1,y2-y1} |向量P1P2|=根號[(x2-x1)平方+(y2-y1)平方]
4.向量a={x1,x2}向量b={x2,y2} 向量a*向量b=|向量a|*|向量b|*Cosα=x1x2+y1y2 Cosα=向量a*向量b/|向量a|*|向量b| (x1x2+y1y2) 根號(x1平方+y1 平方)*根號(x2 平方+y2 平方)
5.空間向量:同上推論 (提示:向量a={x,y,z})
6.充要條件: 如果向量a向量b 那么向量a*向量b=0 如果向量a//向量b 那么向量a*向量b=|向量a|*|向量b| 或者x1/x2=y1/y2
7.|向量a向量b|平方 =|向量a|平方+|向量b|平方2 向量a*向量b =(向量a向量b)平方
高二數學(xué)知識點(diǎn)總結2
排列組合
排列P------和順序有關(guān)
組合C-------不牽涉到順序的問(wèn)題
排列分順序,組合不分
例如把5本不同的書(shū)分給3個(gè)人,有幾種分法."排列"
把5本書(shū)分給3個(gè)人,有幾種分法"組合"
1.排列及計算公式
從n個(gè)不同元素中,任取m(m≤n)個(gè)元素按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有排列的個(gè)數,叫做從n個(gè)不同元素中取出m個(gè)元素的排列數,用符號p(n,m)表示.
p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(規定0!=1).
2.組合及計算公式
從n個(gè)不同元素中,任取m(m≤n)個(gè)元素并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有組合的個(gè)數,叫做從n個(gè)不同元素中取出m個(gè)元素的組合數.用符號
c(n,m)表示.
c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);
3.其他排列與組合公式
從n個(gè)元素中取出r個(gè)元素的循環(huán)排列數=p(n,r)/r=n!/r(n-r)!.
n個(gè)元素被分成k類(lèi),每類(lèi)的個(gè)數分別是n1,n2,...nk這n個(gè)元素的全排列數為
n!/(n1!_2!_.._k!).
k類(lèi)元素,每類(lèi)的個(gè)數無(wú)限,從中取出m個(gè)元素的組合數為c(m+k-1,m).
排列(Pnm(n為下標,m為上標))
Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是階乘符號);Pnn(兩個(gè)n分別為上標和下標)=n!;0!=1;Pn1(n為下標1為上標)=n
組合(Cnm(n為下標,m為上標))
Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(兩個(gè)n分別為上標和下標)=1;Cn1(n為下標1為上標)=n;Cnm=Cnn-m
20xx-07-0813:30
公式P是指排列,從N個(gè)元素取R個(gè)進(jìn)行排列。公式C是指組合,從N個(gè)元素取R個(gè),不進(jìn)行排列。N-元素的總個(gè)數R參與選擇的元素個(gè)數!-階乘,如9!=9________
從N倒數r個(gè),表達式應該為n_n-1)_n-2)..(n-r+1);
因為從n到(n-r+1)個(gè)數為n-(n-r+1)=r
高二數學(xué)知識點(diǎn)總結3
【不等關(guān)系及不等式】
一、不等關(guān)系及不等式知識點(diǎn)
1.不等式的定義
在客觀(guān)世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數學(xué)符號、、連接兩個(gè)數或代數式以表示它們之間的不等關(guān)系,含有這些不等號的式子,叫做不等式.
2.比較兩個(gè)實(shí)數的大小
兩個(gè)實(shí)數的大小是用實(shí)數的運算性質(zhì)來(lái)定義的,有a-baa-b=0a-ba0,則有a/baa/b=1a/ba
3.不等式的性質(zhì)
(1)對稱(chēng)性:ab
(2)傳遞性:ab,ba
(3)可加性:aa+cb+c,ab,ca+c
(4)可乘性:ab,cacb0,c0bd;
(5)可乘方:a0bn(nN,n
(6)可開(kāi)方:a0
(nN,n2).
注意:
一個(gè)技巧
作差法變形的技巧:作差法中變形是關(guān)鍵,常進(jìn)行因式分解或配方.
一種方法
待定系數法:求代數式的范圍時(shí),先用已知的代數式表示目標式,再利用多項式相等的法則求出參數,最后利用不等式的性質(zhì)求出目標式的范圍.
高二數學(xué)知識點(diǎn)總結4
1、向量的加法
向量的加法滿(mǎn)足平行四邊形法則和三角形法則。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的運算律:
交換律:a+b=b+a;
結合律:(a+b)+c=a+(b+c)。
2、向量的減法
如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量為0
AB-AC=CB. 即“共同起點(diǎn),指向被減”
a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').
3、數乘向量
實(shí)數λ和向量a的乘積是一個(gè)向量,記作λa,且∣λa∣=∣λ∣·∣a∣。
當λ>0時(shí),λa與a同方向;
當λ<0時(shí),λa與a反方向;
當λ=0時(shí),λa=0,方向任意。
當a=0時(shí),對于任意實(shí)數λ,都有λa=0。
注:按定義知,如果λa=0,那么λ=0或a=0。
實(shí)數λ叫做向量a的系數,乘數向量λa的幾何意義就是將表示向量a的有向線(xiàn)段伸長(cháng)或壓縮。
當∣λ∣>1時(shí),表示向量a的有向線(xiàn)段在原方向(λ>0)或反方向(λ<0)上伸長(cháng)為原來(lái)的∣λ∣倍;
當∣λ∣<1時(shí),表示向量a的有向線(xiàn)段在原方向(λ>0)或反方向(λ<0)上縮短為原來(lái)的∣λ∣倍。
數與向量的乘法滿(mǎn)足下面的運算律
結合律:(λa)·b=λ(a·b)=(a·λb)。
向量對于數的分配律(第一分配律):(λ+μ)a=λa+μa.
數對于向量的分配律(第二分配律):λ(a+b)=λa+λb.
數乘向量的消去律:① 如果實(shí)數λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。
4、向量的的數量積
定義:兩個(gè)非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。
定義:兩個(gè)向量的數量積(內積、點(diǎn)積)是一個(gè)數量,記作a·b。若a、b不共線(xiàn),則a·b=|a|·|b|·cos〈a,b〉;若a、b共線(xiàn),則a·b=+-∣a∣∣b∣。
向量的數量積的坐標表示:a·b=x·x'+y·y'。
向量的數量積的運算率
a·b=b·a(交換率);
(a+b)·c=a·c+b·c(分配率);
向量的數量積的性質(zhì)
a·a=|a|的平方。
a⊥b 〈=〉a·b=0。
|a·b|≤|a|·|b|。
高二數學(xué)知識點(diǎn)總結5
第一:高考數學(xué)中有函數、數列、三角函數、平面向量、不等式、立體幾何等九大章節。
主要是考函數和導數,這是我們整個(gè)高中階段里最核心的板塊,在這個(gè)板塊里,重點(diǎn)考察兩個(gè)方面:第一個(gè)函數的性質(zhì),包括函數的單調性、奇偶性;第二是函數的解答題,重點(diǎn)考察的是二次函數和高次函數,分函數和它的一些分布問(wèn)題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析就是二次方程的分布的問(wèn)題,這是第一個(gè)板塊。
第二:平面向量和三角函數。
重點(diǎn)考察三個(gè)方面:
一個(gè)是劃減與求值。
第一,重點(diǎn)掌握公式,重點(diǎn)掌握五組基本公式。
第二,是三角函數的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數和余弦函數的性質(zhì)。
第三,正弦定理和余弦定理來(lái)解三角形。難度比較小。
第三:數列。
數列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項;一個(gè)是求和。
第四:空間向量和立體幾何。
在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計算。
第五:概率和統計。
這一板塊主要是屬于數學(xué)應用問(wèn)題的范疇,當然應該掌握下面幾個(gè)方面:
第一……等可能的概率。
第二………事件。
第三是獨立事件,還有獨立重復事件發(fā)生的概率。
第六:解析幾何。
這是我們比較頭疼的問(wèn)題,是整個(gè)試卷里難度比較大,計算量的題,當然這一類(lèi)題,我總結下面五類(lèi)?嫉念}型,包括第一類(lèi)所講的直線(xiàn)和曲線(xiàn)的位置關(guān)系,這是考試最多的內容?忌鷳撜莆账耐ǚ,第二類(lèi)我們所講的動(dòng)點(diǎn)問(wèn)題,第三類(lèi)是弦長(cháng)問(wèn)題,第四類(lèi)是對稱(chēng)問(wèn)題,這也是20xx年高考已經(jīng)考過(guò)的一點(diǎn),第五類(lèi)重點(diǎn)問(wèn)題,這類(lèi)題時(shí)往往覺(jué)得有思路,但是沒(méi)有答案,當然這里我相等的是,這道題盡管計算量很大,但是造成計算量大的原因,往往有這個(gè)原因,我們所選方法不是很恰當,因此,在這一章里我們要掌握比較好的算法,來(lái)提高我們做題的準確度,這是我們所講的第六大板塊。
第七:押軸題。
考生在備考復習時(shí),應該重點(diǎn)不等式計算的方法,雖然說(shuō)難度比較大,我建議考生,采取分部得分整個(gè)試卷不要留空白。這是高考所考的七大板塊核心的考點(diǎn)。
高二數學(xué)知識點(diǎn)總結6
(一)解三角形:
1、正弦定理:在中,、、分別為角、、的對邊,,則有
(為的外接圓的半徑)
2、正弦定理的變形公式:①,,;
、,,;③;
3、三角形面積公式:.
4、余弦定理:在中,有,推論:
(二)數列:
1.數列的有關(guān)概念:
(1)數列:按照一定次序排列的一列數。數列是有序的。數列是定義在自然數N_它的有限子集{1,2,3,…,n}上的函數。
(2)通項公式:數列的第n項an與n之間的函數關(guān)系用一個(gè)公式來(lái)表示,這個(gè)公式即是該數列的通項公式。如:。
(3)遞推公式:已知數列{an}的第1項(或前幾項),且任一項an與他的前一項an-1(或前幾項)可以用一個(gè)公式來(lái)表示,這個(gè)公式即是該數列的遞推公式。
如:。
2.數列的表示方法:
(1)列舉法:如1,3,5,7,9,…(2)圖象法:用(n,an)孤立點(diǎn)表示。
(3)解析法:用通項公式表示。(4)遞推法:用遞推公式表示。
3.數列的分類(lèi):
4.數列{an}及前n項和之間的關(guān)系:
高二數學(xué)知識點(diǎn)總結7
一、導數的應用
1.用導數研究函數的最值
確定函數在其確定的定義域內可導(通常為開(kāi)區間),求出導函數在定義域內的零點(diǎn),研究在零點(diǎn)左、右的函數的單調性,若左增,右減,則在該零點(diǎn)處,函數去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數取極小值。學(xué)習了如何用導數研究函數的最值之后,可以做一個(gè)有關(guān)導數和函數的綜合題來(lái)檢驗下學(xué)習成果。
2.生活中常見(jiàn)的函數優(yōu)化問(wèn)題
1)費用、成本最省問(wèn)題
2)利潤、收益最大問(wèn)題
3)面積、體積最(大)問(wèn)題
二、推理與證明
1.歸納推理:歸納推理是高二數學(xué)的一個(gè)重點(diǎn)內容,其難點(diǎn)就是有部分結論得到一般結論,破解的方法是充分考慮部分結論提供的信息,從中發(fā)現一般規律;類(lèi)比推理的難點(diǎn)是發(fā)現兩類(lèi)對象的相似特征,由其中一類(lèi)對象的特征得出另一類(lèi)對象的特征,破解的方法是利用已經(jīng)掌握的數學(xué)知識,分析兩類(lèi)對象之間的關(guān)系,通過(guò)兩類(lèi)對象已知的相似特征得出所需要的相似特征。
2.類(lèi)比推理:由兩類(lèi)對象具有某些類(lèi)似特征和其中一類(lèi)對象的某些已知特征,推出另一類(lèi)對象也具有這些特征的推理稱(chēng)為類(lèi)比推理,簡(jiǎn)而言之,類(lèi)比推理是由特殊到特殊的推理。
三、不等式
對于含有參數的一元二次不等式解的討論
1)二次項系數:如果二次項系數含有字母,要分二次項系數是正數、零和負數三種情況進(jìn)行討論。
2)不等式對應方程的根:如果一元二次不等式對應的方程的根能夠通過(guò)因式分解的方法求出來(lái),則根據這兩個(gè)根的大小進(jìn)行分類(lèi)討論,這時(shí),兩個(gè)根的大小關(guān)系就是分類(lèi)標準,如果一元二次不等式對應的方程根不能通過(guò)因式分解的方法求出來(lái),則根據方程的判別式進(jìn)行分類(lèi)討論。通過(guò)不等式練習題能夠幫助你更加熟練的運用不等式的知識點(diǎn),例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過(guò)程中總結出來(lái)。
拓展閱讀
說(shuō)明:以下內容為本文主關(guān)鍵詞的百科內容,一詞可能多意,僅作為參考閱讀內容,下載的文檔不包含此內容。每個(gè)關(guān)鍵詞后面會(huì )隨機推薦一個(gè)搜索引擎工具,方便用戶(hù)從多個(gè)垂直領(lǐng)域了解更多與本文相似的內容。
1、數學(xué):數學(xué),是研究數量、結構、變化、空間以及信息等概念的一門(mén)學(xué)科。數學(xué)是人類(lèi)對事物的抽象結構與模式進(jìn)行嚴格描述的一種通用手段,可以應用于現實(shí)世界的任何問(wèn)題,所有的數學(xué)對象本質(zhì)上都是人為定義的。從這個(gè)意義上,數學(xué)屬于形式科學(xué),而不是自然科學(xué)。不同的數學(xué)家和哲學(xué)家對數學(xué)的確切范圍和定義有一系列的看法。在人類(lèi)歷史發(fā)展和社會(huì )生活中,數學(xué)發(fā)揮著(zhù)不可替代的作用,同時(shí)也是學(xué)習和研究現代科學(xué)技術(shù)必不可少的基本工具。數學(xué)史數理邏輯與數學(xué)基礎a:演繹邏輯學(xué)(也稱(chēng)符號邏輯學(xué)),b:證明論(也稱(chēng)元數學(xué)),c:遞歸論,d:模型論,e:公理集合論,f:數學(xué)基礎,g:數理邏輯與數學(xué)基礎其他學(xué)科。數論a:初等數論,b:解析數論,c:代數數論,d:超越數論,e:丟番圖逼近,f:數的幾何,g:概率數論,h:計算數論,i:數論其他學(xué)科。代數學(xué)a:線(xiàn)性代數,b:群論,c:域論,d:李群,e:李代數,f:Kac-Moody代數,g:環(huán)論(包括交換環(huán)與交換代數,...頭條搜索更多高二數學(xué)下冊知識點(diǎn)總結
2、類(lèi)比推理:類(lèi)比推理亦稱(chēng)“類(lèi)推”。推理的一種形式。根據兩個(gè)對象在某些屬性上相同或相似,通過(guò)比較而推斷出它們在其他屬性上也相同的推理過(guò)程。它是從觀(guān)察個(gè)別現象開(kāi)始的,因而近似歸納推理。但它又不是由特殊到一般,而是由特殊到特殊,因而又不同于歸納推理。分完全類(lèi)推和不完全類(lèi)推兩種形式。完全類(lèi)推是兩個(gè)或兩類(lèi)事物在進(jìn)行比較的方面完全相同時(shí)的類(lèi)推;不完全類(lèi)推是兩個(gè)或兩類(lèi)事物在進(jìn)行比較的方面不完全相同時(shí)的類(lèi)推。這是科學(xué)研究中常用的方法之一。它是從特殊推向特殊的推理。類(lèi)比推理是根據兩個(gè)或兩類(lèi)對象有部分屬性相同,從而推出它們的其他屬性也相同的推理。簡(jiǎn)稱(chēng)類(lèi)推、類(lèi)比。以關(guān)于兩個(gè)事物某些屬性相同的判斷為前提,推出兩個(gè)事物的其他屬性相同的結論的推理。如聲和光有不少屬性相同--直線(xiàn)傳播,有反射、折射和干擾等現象;由此推出:既然聲有波動(dòng)性質(zhì),光也有波動(dòng)性質(zhì)。這就是類(lèi)比推理。類(lèi)比推理具有或然性。如果前提中確認的共同屬性很少,而且共同屬性和推出來(lái)的屬性沒(méi)有什么關(guān)系,這樣的類(lèi)比推...谷歌搜索更多高二數學(xué)下冊知識點(diǎn)總結
3、總結:總結是事后對某一階段的工作或某項工作的完成情況,包括取得的成績(jì)、存在的問(wèn)題及得到的經(jīng)驗和教訓加以回顧和分析,為今后的工作提供幫助和借鑒的一種書(shū)面材料。(1)自身性?偨Y都是以第一人稱(chēng),從自身出發(fā)。它是單位或個(gè)人自身實(shí)踐活動(dòng)的反映,其內容行文來(lái)自自身實(shí)踐,其結論也為指導今后自身實(shí)踐。(2)指導性?偨Y以回顧思考的方式對自身以往實(shí)踐做理性認識,找出事物本質(zhì)和發(fā)展規律,取得經(jīng)驗,避免失誤,以指導未來(lái)工作。(3)理論性?偨Y是理論的升華,是對前一階段工作的經(jīng)驗、教訓的分析研究,借此上升到理論的高度,并從中提煉出有規律性的東西,從而提高認識,以正確的認識來(lái)把握客觀(guān)事物,更好地指導今后的實(shí)際工作。(4)客觀(guān)性?偨Y是對實(shí)際工作再認識的過(guò)程,是對前一階段工作的回顧?偨Y的內容必須要完全忠于自身的客觀(guān)實(shí)踐,其材料必須以客觀(guān)事實(shí)為依據,不允許東拼西湊,要真實(shí)、客觀(guān)地分析情況、總結經(jīng)驗。(1)綜合性總結。對某一單位、某一部門(mén)工作進(jìn)行全面性總結,既反...頭條搜索更多高二數學(xué)下冊知識點(diǎn)總結
4、因式分解:把一個(gè)多項式在一個(gè)范圍(如實(shí)數范圍內分解,即所有項均為實(shí)數)化為幾個(gè)整式的積的形式,這種式子變形叫做這個(gè)多項式的因式分解,也叫作把這個(gè)多項式分解因式。把一個(gè)多項式在一個(gè)范圍化為幾個(gè)整式的積的形式,這種式子變形叫做這個(gè)多項式的因式分解,也叫作把這個(gè)多項式分解因式。因式分解是中學(xué)數學(xué)中最重要的恒等變形之一,它被廣泛地應用于初等數學(xué)之中,在數學(xué)求根作圖、解一元二次方程方面也有很廣泛的應用,是解決許多數學(xué)問(wèn)題的有力工具。因式分解方法靈活,技巧性強。學(xué)習這些方法與技巧,不僅是掌握因式分解內容所需的,而且對于培養解題技能、發(fā)展思維能力都有著(zhù)十分獨特的作用。學(xué)習它,既可以復習整式的四則運算,又為學(xué)習分式打好基礎;學(xué)好它,既可以培養學(xué)生的觀(guān)察、思維發(fā)展性、運算能力,又可以提高綜合分析和解決問(wèn)題的能力;窘Y論:分解因式為整式乘法的逆過(guò)程。高級結論:在高等代數上,因式分解有一些重要結論,在初等代數層面上證明很困難,但是理解很容易。
高二數學(xué)知識點(diǎn)總結8
一、集合、簡(jiǎn)易邏輯(14課時(shí),8個(gè))
1.集合;2.子集;3.補集;4.交集;5.并集;6.邏輯連結詞;7.四種命題;8.充要條件。
二、函數(30課時(shí),12個(gè))
1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關(guān)系;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質(zhì);11.對數函數.12.函數的應用舉例。
三、數列(12課時(shí),5個(gè))
1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式。
四、三角函數(46課時(shí),17個(gè))
1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4.單位圓中的三角函數線(xiàn);5.同角三角函數的基本關(guān)系式;6.正弦、余弦的誘導公式;7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數、余弦函數的圖象和性質(zhì);10.周期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質(zhì);14.已知三角函數值求角;15.正弦定理;16.余弦定理;17.斜三角形解法舉例。
五、平面向量(12課時(shí),8個(gè))
1.向量;2.向量的加法與減法;3.實(shí)數與向量的積;4.平面向量的坐標表示;5.線(xiàn)段的定比分點(diǎn);6.平面向量的數量積;7.平面兩點(diǎn)間的距離;8.平移。
六、不等式(22課時(shí),5個(gè))
1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。
七、直線(xiàn)和圓的方程(22課時(shí),12個(gè))
1.直線(xiàn)的傾斜角和斜率;2.直線(xiàn)方程的點(diǎn)斜式和兩點(diǎn)式;3.直線(xiàn)方程的一般式;4.兩條直線(xiàn)平行與垂直的條件;5.兩條直線(xiàn)的交角;6.點(diǎn)到直線(xiàn)的距離;7.用二元一次不等式表示平面區域;8.簡(jiǎn)單線(xiàn)性規劃問(wèn)題;9.曲線(xiàn)與方程的概念;10.由已知條件列出曲線(xiàn)方程;11.圓的標準方程和一般方程;12.圓的參數方程。
八、圓錐曲線(xiàn)(18課時(shí),7個(gè))
1.橢圓及其標準方程;2.橢圓的簡(jiǎn)單幾何性質(zhì);3.橢圓的參數方程;4.雙曲線(xiàn)及其標準方程;5.雙曲線(xiàn)的簡(jiǎn)單幾何性質(zhì);6.拋物線(xiàn)及其標準方程;7.拋物線(xiàn)的簡(jiǎn)單幾何性質(zhì)。
九、直線(xiàn)、平面、簡(jiǎn)單何體(36課時(shí),28個(gè))
1.平面及基本性質(zhì);2.平面圖形直觀(guān)圖的畫(huà)法;3.平面直線(xiàn);4.直線(xiàn)和平面平行的判定與性質(zhì);5.直線(xiàn)和平面垂直的判定與性質(zhì);6.三垂線(xiàn)定理及其逆定理;7.兩個(gè)平面的位置關(guān)系;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線(xiàn)的方向向量;12.異面直線(xiàn)所成的角;13.異面直線(xiàn)的公垂線(xiàn);14.異面直線(xiàn)的距離;15.直線(xiàn)和平面垂直的性質(zhì);16.平面的法向量;17.點(diǎn)到平面的距離;18.直線(xiàn)和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個(gè)平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球。
十、排列、組合、二項式定理(18課時(shí),8個(gè))
1.分類(lèi)計數原理與分步計數原理;2.排列;3.排列數公式;4.組合;5.組合數公式;6.組合數的兩個(gè)性質(zhì);7.二項式定理;8.二項展開(kāi)式的性質(zhì)。
十一、概率(12課時(shí),5個(gè))
1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個(gè)發(fā)生的概率;4.相互獨立事件同時(shí)發(fā)生的概率;5.獨立重復試驗。
選修Ⅱ(24個(gè))
十二、概率與統計(14課時(shí),6個(gè))
1.離散型隨機變量的分布列;2.離散型隨機變量的期望值和方差;3.抽樣方法;4.總體分布的估計;5.正態(tài)分布;6.線(xiàn)性回歸。
十三、極限(12課時(shí),6個(gè))
1.數學(xué)歸納法;2.數學(xué)歸納法應用舉例;3.數列的極限;4.函數的極限;5.極限的四則運算;6.函數的連續性。
十四、導數(18課時(shí),8個(gè))
1.導數的概念;2.導數的幾何意義;3.幾種常見(jiàn)函數的導數;4.兩個(gè)函數的和、差、積、商的導數;5.復合函數的導數;6.基本導數公式;7.利用導數研究函數的單調性和極值;8.函數的最大值和最小值。
十五、復數(4課時(shí),4個(gè))
1.復數的概念;2.復數的加法和減法;3.復數的乘法和除法;4.復數的一元二次方程和二項方程的解法。
高二數學(xué)知識點(diǎn)總結9
考點(diǎn)一:向量的概念、向量的基本定理
【內容解讀】了解向量的實(shí)際背景,掌握向量、零向量、平行向量、共線(xiàn)向量、單位向量、相等向量等概念,理解向量的'幾何表示,掌握平面向量的基本定理。
注意對向量概念的理解,向量是可以自由移動(dòng)的,平移后所得向量與原向量相同;兩個(gè)向量無(wú)法比較大小,它們的?杀容^大小。
考點(diǎn)二:向量的運算
【內容解讀】向量的運算要求掌握向量的加減法運算,會(huì )用平行四邊形法則、三角形法則進(jìn)行向量的加減運算;掌握實(shí)數與向量的積運算,理解兩個(gè)向量共線(xiàn)的含義,會(huì )判斷兩個(gè)向量的平行關(guān)系;掌握向量的數量積的運算,體會(huì )平面向量的數量積與向量投影的關(guān)系,并理解其幾何意義,掌握數量積的坐標表達式,會(huì )進(jìn)行平面向量積的運算,能運用數量積表示兩個(gè)向量的夾角,會(huì )用向量積判斷兩個(gè)平面向量的垂直關(guān)系。
【命題規律】命題形式主要以選擇、填空題型出現,難度不大,考查重點(diǎn)為模和向量夾角的定義、夾角公式、向量的坐標運算,有時(shí)也會(huì )與其它內容相結合。
考點(diǎn)三:定比分點(diǎn)
【內容解讀】掌握線(xiàn)段的定比分點(diǎn)和中點(diǎn)坐標公式,并能熟練應用,求點(diǎn)分有向線(xiàn)段所成比時(shí),可借助圖形來(lái)幫助理解。
【命題規律】重點(diǎn)考查定義和公式,主要以選擇題或填空題型出現,難度一般。由于向量應用的廣泛性,經(jīng)常也會(huì )與三角函數,解析幾何一并考查,若出現在解答題中,難度以中檔題為主,偶爾也以難度略高的題目。
考點(diǎn)四:向量與三角函數的綜合問(wèn)題
【內容解讀】向量與三角函數的綜合問(wèn)題是高考經(jīng)常出現的問(wèn)題,考查了向量的知識,三角函數的知識,達到了高考中試題的覆蓋面的要求。
【命題規律】命題以三角函數作為坐標,以向量的坐標運算或向量與解三角形的內容相結合,也有向量與三角函數圖象平移結合的問(wèn)題,屬中檔偏易題。
考點(diǎn)五:平面向量與函數問(wèn)題的交匯
【內容解讀】平面向量與函數交匯的問(wèn)題,主要是向量與二次函數結合的問(wèn)題為主,要注意自變量的取值范圍。
【命題規律】命題多以解答題為主,屬中檔題。
考點(diǎn)六:平面向量在平面幾何中的應用
【內容解讀】向量的坐標表示實(shí)際上就是向量的代數表示.在引入向量的坐標表示后,使向量之間的運算代數化,這樣就可以將“形”和“數”緊密地結合在一起.因此,許多平面幾何問(wèn)題中較難解決的問(wèn)題,都可以轉化為大家熟悉的代數運算的論證.也就是把平面幾何圖形放到適當的坐標系中,賦予幾何圖形有關(guān)點(diǎn)與平面向量具體的坐標,這樣將有關(guān)平面幾何問(wèn)題轉化為相應的代數運算和向量運算,從而使問(wèn)題得到解決.
【命題規律】命題多以解答題為主,屬中等偏難的試題。
高二數學(xué)知識點(diǎn)總結10
一、集合、簡(jiǎn)易邏輯(14課時(shí),8個(gè))1.集合;2.子集;3.補集;4.交集;5.并集;6.邏輯連結詞;7.四種命題;8.充要條件.
二、函數(30課時(shí),12個(gè))1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關(guān)系;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質(zhì);11.對數函數.12.函數的應用舉例.
三、數列(12課時(shí),5個(gè))1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式.
四、三角函數(46課時(shí)17個(gè))1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4,單位圓中的三角函數線(xiàn);5.同角三角函數的基本關(guān)系式;6.正弦、余弦的誘導公式’7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數、余弦函數的圖象和性質(zhì);10.周期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質(zhì);14.已知三角函數值求角;15.正弦定理;16余弦定理;17斜三角形解法舉例.
五、平面向量(12課時(shí),8個(gè))1.向量2.向量的加法與減法3.實(shí)數與向量的積;4.平面向量的坐標表示;5.線(xiàn)段的定比分點(diǎn);6.平面向量的數量積;7.平面兩點(diǎn)間的距離;8.平移.
六、不等式(22課時(shí),5個(gè))1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對值的不等式.
七、直線(xiàn)和圓的方程(22課時(shí),12個(gè))1.直線(xiàn)的傾斜角和斜率;2.直線(xiàn)方程的點(diǎn)斜式和兩點(diǎn)式;3.直線(xiàn)方程的一般式;4.兩條直線(xiàn)平行與垂直的條件;5.兩條直線(xiàn)的交角;6.點(diǎn)到直線(xiàn)的距離;7.用二元一次不等式表示平面區域;8.簡(jiǎn)單線(xiàn)性規劃問(wèn)題.9.曲線(xiàn)與方程的概念;10.由已知條件列出曲線(xiàn)方程;11.圓的標準方程和一般方程;12.圓的參數方程.
八、圓錐曲線(xiàn)(18課時(shí),7個(gè))1橢圓及其標準方程;2.橢圓的簡(jiǎn)單幾何性質(zhì);3.橢圓的參數方程;4.雙曲線(xiàn)及其標準方程;5.雙曲線(xiàn)的簡(jiǎn)單幾何性質(zhì);6.拋物線(xiàn)及其標準方程;7.拋物線(xiàn)的簡(jiǎn)單幾何性質(zhì).九、(B)直線(xiàn)、平面、簡(jiǎn)單何體(36課時(shí),28個(gè))1.平面及基本性質(zhì);2.平面圖形直觀(guān)圖的畫(huà)法;3.平面直線(xiàn);4.直線(xiàn)和平面平行的判定與性質(zhì);5,直線(xiàn)和平面垂直的判與性質(zhì);6.三垂線(xiàn)定理及其逆定理;7.兩個(gè)平面的位置關(guān)系;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線(xiàn)的方向向量;12.異面直線(xiàn)所成的角;13.異面直線(xiàn)的公垂線(xiàn);14異面直線(xiàn)的距離;15.直線(xiàn)和平面垂直的性質(zhì);16.平面的法向量;17.點(diǎn)到平面的距離;18.直線(xiàn)和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個(gè)平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球.
十、排列、組合、二項式定理(18課時(shí),8個(gè))1.分類(lèi)計數原理與分步計數原理.2.排列;3.排列數公式’4.組合;5.組合數公式;6.組合數的兩個(gè)性質(zhì);7.二項式定理;8.二項展開(kāi)式的性質(zhì).
十一、概率(12課時(shí),5個(gè))1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個(gè)發(fā)生的概率;4.相互獨立事件同時(shí)發(fā)生的概率;5.獨立重復試驗.選修Ⅱ(24個(gè))
十二、概率與統計(14課時(shí),6個(gè))1.離散型隨機變量的分布列;2.離散型隨機變量的期望值和方差;3.抽樣方法;4.總體分布的估計;5.正態(tài)分布;6.線(xiàn)性回歸.
十三、極限(12課時(shí),6個(gè))1.數學(xué)歸納法;2.數學(xué)歸納法應用舉例;3.數列的極限;4.函數的極限;5.極限的四則運算;6.函數的連續性.
十四、導數(18課時(shí),8個(gè))1.導數的概念;2.導數的幾何意義;3.幾種常見(jiàn)函數的導數;4.兩個(gè)函數的和、差、積、商的導數;5.復合函數的導數;6.基本導數公式;7.利用導數研究函數的單調性和極值;8函數的最大值和最小值.
十五、復數(4課時(shí),4個(gè))1.復數的概念;2.復數的加法和減法;3.復數的乘法和除法答案補充高中數學(xué)有130個(gè)知識點(diǎn),從前一份試卷要考查90個(gè)知識點(diǎn),覆蓋率達70%左右,而且把這一項作為衡量試卷成功與否的標準之一.這一傳統近年被打破,取而代之的是關(guān)注思維,突出能力,重視思想方法和思維能力的考查.現在的我們學(xué)數學(xué)比前人幸福啊!!相信對你的學(xué)習會(huì )有幫助的,祝你成功!答案補充一試全國高中數學(xué)聯(lián)賽的一試競賽大綱,完全按照全日制中學(xué)《數學(xué)教學(xué)大綱》中所規定的教學(xué)要求和內容,即高考所規定的知識范圍和方法,在方法的要求上略有提高,其中概率和微積分初步不考。二試1、平面幾何基本要求:掌握初中數學(xué)競賽大綱所確定的所有內容。補充要求:面積和面積方法。幾個(gè)重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。幾個(gè)重要的極值:到三角形三頂點(diǎn)距離之和最小的點(diǎn)--費馬點(diǎn)。到三角形三頂點(diǎn)距離的平方和最小的點(diǎn),重心。三角形內到三邊距離之積最大的點(diǎn),重心。幾何不等式。簡(jiǎn)單的等周問(wèn)題。了解下述定理:在周長(cháng)一定的n邊形的集合中,正n邊形的面積最大。在周長(cháng)一定的簡(jiǎn)單閉曲線(xiàn)的集合中,圓的面積最大。在面積一定的n邊形的集合中,正n邊形的周長(cháng)最小。在面積一定的簡(jiǎn)單閉曲線(xiàn)的集合中,圓的周長(cháng)最小。幾何中的運動(dòng):反射、平移、旋轉。復數方法、向量方法。平面凸集、凸包及應用。答案補充第二數學(xué)歸納法。遞歸,一階、二階遞歸,特征方程法。函數迭代,求n次迭代,簡(jiǎn)單的函數方程。n個(gè)變元的平均不等式,柯西不等式,排序不等式及應用。復數的指數形式,歐拉公式,棣莫佛定理,單位根,單位根的應用。圓排列,有重復的排列與組合,簡(jiǎn)單的組合恒等式。一元n次方程(多項式)根的個(gè)數,根與系數的關(guān)系,實(shí)系數方程虛根成對定理。簡(jiǎn)單的初等數論問(wèn)題,除初中大綱中所包括的內容外,還應包括無(wú)窮遞降法,同余,歐幾里得除法,非負最小完全剩余類(lèi),高斯函數,費馬小定理,歐拉函數,孫子定理,格點(diǎn)及其性質(zhì)。3、立體幾何多面角,多面角的性質(zhì)。三面角、直三面角的基本性質(zhì)。正多面體,歐拉定理。體積證法。截面,會(huì )作截面、表面展開(kāi)圖。4、平面解析幾何直線(xiàn)的法線(xiàn)式,直線(xiàn)的極坐標方程,直線(xiàn)束及其應用。二元一次不等式表示的區域。三角形的面積公式。圓錐曲線(xiàn)的切線(xiàn)和法線(xiàn)。圓的冪和根軸。
高二數學(xué)知識點(diǎn)總結11
等腰直角三角形面積公式:S=a2/2,S=ch/2=c2/4(其中a為直角邊,c為斜邊,h為斜邊上的高)。
面積公式
若假設等腰直角三角形兩腰分別為a,b,底為c,則可得其面積:
S=ab/2。
且由等腰直角三角形性質(zhì)可知:底邊c上的高h=c/2,則三角面積可表示為:
S=ch/2=c2/4。
等腰直角三角形是一種特殊的三角形,具有所有三角形的性質(zhì):穩定性,兩直角邊相等直角邊夾一直角銳角45°,斜邊上中線(xiàn)角平分線(xiàn)垂線(xiàn)三線(xiàn)合一。
反正弦函數的導數:正弦函數y=sinx在[-π/2,π/2]上的反函數,叫做反正弦函數。記作arcsinx,表示一個(gè)正弦值為x的角,該角的范圍在[-π/2,π/2]區間內。定義域[-1,1],值域[-π/2,π/2]。
反函數求導方法
若F(X),G(X)互為反函數,
則:F'(X)_'(X)=1
E.G.:y=arcsin_siny
y'_'=1(arcsinx)'_siny)'=1
y'=1/(siny)'=1/(cosy)=1/根號(1-sin^2y)=1/根號(1-x^2)
其余依此類(lèi)推
高二數學(xué)知識點(diǎn)總結12
排列組合公式/排列組合計算公式
排列P——————和順序有關(guān)
組合C———————不牽涉到順序的問(wèn)題
排列分順序,組合不分
例如把5本不同的書(shū)分給3個(gè)人,有幾種分法。"排列"
把5本書(shū)分給3個(gè)人,有幾種分法"組合"
1.排列及計算公式
從n個(gè)不同元素中,任取m(m≤n)個(gè)元素按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有排列的個(gè)數,叫做從n個(gè)不同元素中取出m個(gè)元素的排列數,用符號p(n,m)表示。
p(n,m)=n(n—1)(n—2)……(n—m+1)=n!/(n—m)。ㄒ幎0!=1)。
2.組合及計算公式
從n個(gè)不同元素中,任取m(m≤n)個(gè)元素并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有組合的個(gè)數,叫做從n個(gè)不同元素中取出m個(gè)元素的組合數。用符號
c(n,m)表示。
c(n,m)=p(n,m)/m!=n!/((n—m)!xm。;c(n,m)=c(n,n—m);
3.其他排列與組合公式
從n個(gè)元素中取出r個(gè)元素的循環(huán)排列數=p(n,r)/r=n!/r(n—r)!。
n個(gè)元素被分成k類(lèi),每類(lèi)的個(gè)數分別是n1,n2,..nk這n個(gè)元素的全排列數為n!/(n1!xn2!x..xnk。。
k類(lèi)元素,每類(lèi)的個(gè)數無(wú)限,從中取出m個(gè)元素的組合數為c(m+k—1,m)。
排列(Pnm(n為下標,m為上標))
Pnm=n×(n—1)....(n—m+1);Pnm=n!/(n—m)。ㄗⅲ!是階乘符號);Pnn(兩個(gè)n分別為上標和下標)=n;0!=1;Pn1(n為下標1為上標)=n
組合(Cnm(n為下標,m為上標))
Cnm=Pnm/Pmm;Cnm=n!/m。╪—m);Cnn(兩個(gè)n分別為上標和下標)=1;Cn1(n為下標1為上標)=n;Cnm=Cnn—m
20xx—07—0813:30
公式P是指排列,從N個(gè)元素取R個(gè)進(jìn)行排列。公式C是指組合,從N個(gè)元素取R個(gè),不進(jìn)行排列。N—元素的總個(gè)數R參與選擇的元素個(gè)數!—階乘,如9!=9x8x7x6x5x4x3x2x1
從N倒數r個(gè),表達式應該為nx(n—1)x(n—2),(n—r+1);
因為從n到(n—r+1)個(gè)數為n—(n—r+1)=r
舉例:
Q1:有從1到9共計9個(gè)號碼球,請問(wèn),可以組成多少個(gè)三位數?
A1:123和213是兩個(gè)不同的排列數。即對排列順序有要求的,既屬于“排列P”計算范疇。
上問(wèn)題中,任何一個(gè)號碼只能用一次,顯然不會(huì )出現988,997之類(lèi)的組合,我們可以這么看,百位數有9種可能,十位數則應該有9—1種可能,個(gè)位數則應該只有9—1—1種可能,最終共有9x8x7個(gè)三位數。計算公式=P(3,9)=9x8x7,(從9倒數3個(gè)的乘積)
Q2:有從1到9共計9個(gè)號碼球,請問(wèn),如果三個(gè)一組,代表“三國聯(lián)盟”,可以組合成多少個(gè)“三國聯(lián)盟”?
A2:213組合和312組合,代表同一個(gè)組合,只要有三個(gè)號碼球在一起即可。即不要求順序的,屬于“組合C”計算范疇。
上問(wèn)題中,將所有的包括排列數的個(gè)數去除掉屬于重復的個(gè)數即為最終組合數C(3,9)=9x8x7/3x2x1
排列、組合的概念和公式典型例題分析
例1設有3名學(xué)生和4個(gè)課外小組。(1)每名學(xué)生都只參加一個(gè)課外小組;(2)每名學(xué)生都只參加一個(gè)課外小組,而且每個(gè)小組至多有一名學(xué)生參加。各有多少種不同同方法?
解(1)由于每名學(xué)生都可以參加4個(gè)課外小組中的任何一個(gè),而不限制每個(gè)課外小組的人數,因此共有種不同方法。
。2)由于每名學(xué)生都只參加一個(gè)課外小組,而且每個(gè)小組至多有一名學(xué)生參加,因此共有種不同方法。
點(diǎn)評由于要讓3名學(xué)生逐個(gè)選擇課外小組,故兩問(wèn)都用乘法原理進(jìn)行計算。
例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少種?
解依題意,符合要求的排法可分為第一個(gè)排、、中的某一個(gè),共3類(lèi),每一類(lèi)中不同排法可采用畫(huà)“樹(shù)圖”的方式逐一排出:
∴符合題意的不同排法共有9種。
點(diǎn)評按照分“類(lèi)”的思路,本題應用了加法原理。為把握不同排法的規律,“樹(shù)圖”是一種具有直觀(guān)形象的有效做法,也是解決計數問(wèn)題的一種數學(xué)模型。
例3判斷下列問(wèn)題是排列問(wèn)題還是組合問(wèn)題?并計算出結果。
。1)高三年級學(xué)生會(huì )有11人:①每?jì)扇嘶ネㄒ环庑,共通了多少封信?②每(jì)扇嘶ノ樟艘淮问,共握了多少次手?/p>
。2)高二年級數學(xué)課外小組共10人:①從中選一名正組長(cháng)和一名副組長(cháng),共有多少種不同的選法?②從中選2名參加省數學(xué)競賽,有多少種不同的選法?
。3)有2,3,5,7,11,13,17,19八個(gè)質(zhì)數:①從中任取兩個(gè)數求它們的商可以有多少種不同的商?②從中任取兩個(gè)求它的積,可以得到多少個(gè)不同的積?
。4)有8盆花:①從中選出2盆分別給甲乙兩人每人一盆,有多少種不同的選法?②從中選出2盆放在教室有多少種不同的選法?
分析(1)①由于每人互通一封信,甲給乙的信與乙給甲的信是不同的兩封信,所以與順序有關(guān)是排列;②由于每?jì)扇嘶ノ找淮问,甲與乙握手,乙與甲握手是同一次握手,與順序無(wú)關(guān),所以是組合問(wèn)題。其他類(lèi)似分析。
。1)①是排列問(wèn)題,共用了封信;②是組合問(wèn)題,共需握手(次)。
。2)①是排列問(wèn)題,共有(種)不同的選法;②是組合問(wèn)題,共有種不同的選法。
。3)①是排列問(wèn)題,共有種不同的商;②是組合問(wèn)題,共有種不同的積。
。4)①是排列問(wèn)題,共有種不同的選法;②是組合問(wèn)題,共有種不同的選法。
例4證明。
證明左式
右式。
∴等式成立。
點(diǎn)評這是一個(gè)排列數等式的證明問(wèn)題,選用階乘之商的形式,并利用階乘的性質(zhì),可使變形過(guò)程得以簡(jiǎn)化。
例5化簡(jiǎn)。
解法一原式
解法二原式
點(diǎn)評解法一選用了組合數公式的階乘形式,并利用階乘的性質(zhì);解法二選用了組合數的兩個(gè)性質(zhì),都使變形過(guò)程得以簡(jiǎn)化。
例6解方程:(1);(2)。
解(1)原方程
解得。
。2)原方程可變?yōu)?/p>
∵,,
∴原方程可化為。
即,解得
第六章排列組合、二項式定理
一、考綱要求
1.掌握加法原理及乘法原理,并能用這兩個(gè)原理分析解決一些簡(jiǎn)單的問(wèn)題。
2.理解排列、組合的意義,掌握排列數、組合數的計算公式和組合數的性質(zhì),并能用它們解決一些簡(jiǎn)單的問(wèn)題。
3.掌握二項式定理和二項式系數的性質(zhì),并能用它們計算和論證一些簡(jiǎn)單問(wèn)題。
二、知識結構
三、知識點(diǎn)、能力點(diǎn)提示
。ㄒ唬┘臃ㄔ沓朔ㄔ
說(shuō)明加法原理、乘法原理是學(xué)習排列組合的基礎,掌握此兩原理為處理排列、組合中有關(guān)問(wèn)題提供了理論根據。
高二數學(xué)知識點(diǎn)總結13
分層抽樣
先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類(lèi)型或層次,然后再在各個(gè)類(lèi)型或層次中采用簡(jiǎn)單隨機抽樣或系用抽樣的辦法抽取一個(gè)子樣本,最后,將這些子樣本合起來(lái)構成總體的樣本。
兩種方法
1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。
2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統抽樣的方法抽取樣本。
2.分層抽樣是把異質(zhì)性較強的總體分成一個(gè)個(gè)同質(zhì)性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。
分層標準
(1)以調查所要分析和研究的主要變量或相關(guān)的變量作為分層的標準。
(2)以保證各層內部同質(zhì)性強、各層之間異質(zhì)性強、突出總體內在結構的變量作為分層變量。
(3)以那些有明顯分層區分的變量作為分層變量。
分層的比例問(wèn)題
(1)按比例分層抽樣:根據各種類(lèi)型或層次中的單位數目占總體單位數目的比重來(lái)抽取子樣本的方法。
(2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會(huì )非常少,此時(shí)采用該方法,主要是便于對不同層次的子總體進(jìn)行專(zhuān)門(mén)研究或進(jìn)行相互比較。如果要用樣本資料推斷總體時(shí),則需要先對各層的數據資料進(jìn)行加權處理,調整樣本中各層的比例,使數據恢復到總體中各層實(shí)際的比例結構。
(1)定義:
對于函數y=f(x)(x∈D),把使f(x)=0成立的實(shí)數x叫做函數y=f(x)(x∈D)的零點(diǎn)。
(2)函數的零點(diǎn)與相應方程的根、函數的圖象與x軸交點(diǎn)間的關(guān)系:
方程f(x)=0有實(shí)數根?函數y=f(x)的圖象與x軸有交點(diǎn)?函數y=f(x)有零點(diǎn)。
(3)函數零點(diǎn)的判定(零點(diǎn)存在性定理):
如果函數y=f(x)在區間[a,b]上的圖象是連續不斷的一條曲線(xiàn),并且有f(a)·f(b)<0,那么,函數y=f(x)在區間(a,b)內有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也就是方程f(x)=0的根。
二二次函數y=ax2+bx+c(a>0)的圖象與零點(diǎn)的關(guān)系
三二分法
對于在區間[a,b]上連續不斷且f(a)·f(b)<0的函數y=f(x),通過(guò)不斷地把函數f(x)的零點(diǎn)所在的區間一分為二,使區間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫做二分法。
1、函數的零點(diǎn)不是點(diǎn):
函數y=f(x)的零點(diǎn)就是方程f(x)=0的實(shí)數根,也就是函數y=f(x)的圖象與x軸交點(diǎn)的橫坐標,所以函數的零點(diǎn)是一個(gè)數,而不是一個(gè)點(diǎn).在寫(xiě)函數零點(diǎn)時(shí),所寫(xiě)的一定是一個(gè)數字,而不是一個(gè)坐標。
2、對函數零點(diǎn)存在的判斷中,必須強調:
(1)、f(x)在[a,b]上連續;
(2)、f(a)·f(b)<0;
(3)、在(a,b)內存在零點(diǎn)。
這是零點(diǎn)存在的一個(gè)充分條件,但不必要。
3、對于定義域內連續不斷的函數,其相鄰兩個(gè)零點(diǎn)之間的所有函數值保持同號。
利用函數零點(diǎn)的存在性定理判斷零點(diǎn)所在的區間時(shí),首先看函數y=f(x)在區間[a,b]上的圖象是否連續不斷,再看是否有f(a)·f(b)<0.若有,則函數y=f(x)在區間(a,b)內必有零點(diǎn)。
四判斷函數零點(diǎn)個(gè)數的常用方法
1、解方程法:
令f(x)=0,如果能求出解,則有幾個(gè)解就有幾個(gè)零點(diǎn)。
2、零點(diǎn)存在性定理法:
利用定理不僅要判斷函數在區間[a,b]上是連續不斷的曲線(xiàn),且f(a)·f(b)<0,還必須結合函數的圖象與性質(zhì)(如單調性、奇偶性、周期性、對稱(chēng)性)才能確定函數有多少個(gè)零點(diǎn)。
3、數形結合法:
轉化為兩個(gè)函數的圖象的交點(diǎn)個(gè)數問(wèn)題.先畫(huà)出兩個(gè)函數的圖象,看其交點(diǎn)的個(gè)數,其中交點(diǎn)的個(gè)數,就是函數零點(diǎn)的個(gè)數。
已知函數有零點(diǎn)(方程有根)求參數取值常用的方法
1、直接法:
直接根據題設條件構建關(guān)于參數的不等式,再通過(guò)解不等式確定參數范圍。
2、分離參數法:
先將參數分離,轉化成求函數值域問(wèn)題加以解決。
3、數形結合法:
先對解析式變形,在同一平面直角坐標系中,畫(huà)出函數的圖象,然后數形結合求解。
高二數學(xué)知識點(diǎn)總結14
數列
1、數列的定義及數列的通項公式:
、 an?f(n),數列是定義域為N
的函數f(n),當n依次取1,2,???時(shí)的一列函數值② i。歸納法
若S0?0,則an不分段;若S0?0,則an分段iii。若an?1?pan?q,則可設an?1?m?p(an?m)解得m,得等比數列?an?m?
?Sn?f(an)
iv。若Sn?f(an),先求a
1?得到關(guān)于an?1和an的遞推關(guān)系式
S?f(a)n?1?n?1?Sn?2an?1
例如:Sn?2an?1先求a1,再構造方程組:??(下減上)an?1?2an?1?2an
?Sn?1?2an?1?1
2、等差數列:
、俣x:a
n?1?an=d(常數),證明數列是等差數列的重要工具。 ②通項d?0時(shí),an為關(guān)于n的一次函數;
d>0時(shí),an為單調遞增數列;d<0時(shí),a
n為單調遞減數列。
n(n?1)2
、矍皀?na1?
d,
d?0時(shí),Sn是關(guān)于n的不含常數項的一元二次函數,反之也成立。
、苄再|(zhì):ii。若?an?為等差數列,則am,am?k,am?2k,…仍為等差數列。 iii。若?an?為等差數列,則Sn,S2n?Sn,S3n?S2n,…仍為等差數列。 iv若A為a,b的等差中項,則有A?3。等比數列:
、俣x:
an?1an
?q(常數),是證明數列是等比數列的重要工具。
a?b2
、谕棔r(shí)為常數列)。
、。前n項和
需特別注意,公比為字母時(shí)要討論。
高二數學(xué)知識點(diǎn)總結15
1、幾何概型的定義:如果每個(gè)事件發(fā)生的概率只與構成該事件區域的長(cháng)度(面積或體積)成比例,則稱(chēng)這樣的概率模型為幾何概率模型,簡(jiǎn)稱(chēng)幾何概型。
2、幾何概型的概率公式:P(A)=構成事件A的區域長(cháng)度(面積或體積);
試驗的全部結果所構成的區域長(cháng)度(面積或體積)
3、幾何概型的特點(diǎn):
1)試驗中所有可能出現的結果(基本事件)有無(wú)限多個(gè);
2)每個(gè)基本事件出現的可能性相等、
4、幾何概型與古典概型的比較:一方面,古典概型具有有限性,即試驗結果是可數的;而幾何概型則是在試驗中出現無(wú)限多個(gè)結果,且與事件的區域長(cháng)度(或面積、體積等)有關(guān),即試驗結果具有無(wú)限性,是不可數的。這是二者的不同之處;另一方面,古典概型與幾何概型的試驗結果都具有等可能性,這是二者的共性。
通過(guò)以上對于幾何概型的基本知識點(diǎn)的梳理,我們不難看出其要核是:要抓住幾何概型具有無(wú)限性和等可能性?xún)蓚(gè)特點(diǎn),無(wú)限性是指在一次試驗中,基本事件的個(gè)數可以是無(wú)限的,這是區分幾何概型與古典概型的關(guān)鍵所在;等可能性是指每一個(gè)基本事件發(fā)生的可能性是均等的,這是解題的基本前提。因此,用幾何概型求解的概率問(wèn)題和古典概型的基本思路是相同的,同屬于“比例法”,即隨機事件A的概率可以用“事件A包含的基本事件所占的圖形的長(cháng)度、面積(體積)和角度等”與“試驗的基本事件所占總長(cháng)度、面積(體積)和角度等”之比來(lái)表示。下面就幾何概型常見(jiàn)類(lèi)型題作一歸納梳理。
【高二數學(xué)知識點(diǎn)總結集合15篇】相關(guān)文章:
高二數學(xué)知識點(diǎn)總結(合集15篇)12-27
高二數學(xué)知識點(diǎn)總結精選15篇12-27
高二數學(xué)知識點(diǎn)總結通用15篇12-29
高二數學(xué)知識點(diǎn)總結(匯編15篇)12-29