初中數學(xué)知識點(diǎn)總結15篇(合集)
總結是對某一階段的工作、學(xué)習或思想中的經(jīng)驗或情況進(jìn)行分析研究的書(shū)面材料,他能夠提升我們的書(shū)面表達能力,讓我們一起認真地寫(xiě)一份總結吧。那么總結有什么格式呢?以下是小編為大家整理的初中數學(xué)知識點(diǎn)總結,歡迎閱讀,希望大家能夠喜歡。
初中數學(xué)知識點(diǎn)總結1
初中數學(xué)知識點(diǎn)總結:中位線(xiàn)
知識要點(diǎn):梯形的中位線(xiàn)平行于兩底,并且等于兩底和的一半。
1.中位線(xiàn)概念
(1)三角形中位線(xiàn)定義:連接三角形兩邊中點(diǎn)的線(xiàn)段叫做三角形的中位線(xiàn)。
(2)梯形中位線(xiàn)定義:連結梯形兩腰中點(diǎn)的線(xiàn)段叫做梯形的中位線(xiàn)。
注意:
(1)要把三角形的中位線(xiàn)與三角形的中線(xiàn)區分開(kāi)。三角形中線(xiàn)是連結一頂點(diǎn)和它對邊的中點(diǎn),而三角形中位線(xiàn)是連結三角形兩邊中點(diǎn)的線(xiàn)段。
(2)梯形的中位線(xiàn)是連結兩腰中點(diǎn)的線(xiàn)段而不是連結兩底中點(diǎn)的線(xiàn)段。
(3)兩個(gè)中位線(xiàn)定義間的聯(lián)系:可以把三角形看成是上底為零時(shí)的梯形,這時(shí)梯形的中位線(xiàn)就變成三角形的中位線(xiàn)。
2.中位線(xiàn)定理
(1)三角形中位線(xiàn)定理:三角形的中位線(xiàn)平行于第三邊并且等于它的一半.
三角形兩邊中點(diǎn)的連線(xiàn)(中位線(xiàn))平行于第BC邊,且等于第三邊的一半。
知識要領(lǐng)總結:三角形的中位線(xiàn)所構成的小三角形(中點(diǎn)三角形)面積是原三角形面積的四分之一。
初中數學(xué)知識點(diǎn)總結:平面直角坐標系
下面是對平面直角坐標系的內容學(xué)習,希望同學(xué)們很好的掌握下面的內容。
平面直角坐標系
平面直角坐標系:在平面內畫(huà)兩條互相垂直、原點(diǎn)重合的數軸,組成平面直角坐標系。
水平的數軸稱(chēng)為x軸或橫軸,豎直的數軸稱(chēng)為y軸或縱軸,兩坐標軸的交點(diǎn)為平面直角坐標系的原點(diǎn)。
平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點(diǎn)重合
三個(gè)規定:
、僬较虻囊幎M軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L(cháng)度的規定;一般情況,橫軸、縱軸單位長(cháng)度相同;實(shí)際有時(shí)也可不同,但同一數軸上必須相同。
、巯笙薜囊幎ǎ河疑蠟榈谝幌笙、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學(xué)習,同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數學(xué)知識點(diǎn):平面直角坐標系的構成
對于平面直角坐標系的構成內容,下面我們一起來(lái)學(xué)習哦。
平面直角坐標系的構成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數軸構成平面直角坐標系,簡(jiǎn)稱(chēng)為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱(chēng)為坐標軸,它們的公共原點(diǎn)O稱(chēng)為直角坐標系的原點(diǎn)。
通過(guò)上面對平面直角坐標系的構成知識的講解學(xué)習,希望同學(xué)們對上面的內容都能很好的掌握,同學(xué)們認真學(xué)習吧。
初中數學(xué)知識點(diǎn):點(diǎn)的坐標的性質(zhì)
下面是對數學(xué)中點(diǎn)的坐標的性質(zhì)知識學(xué)習,同學(xué)們認真看看哦。
點(diǎn)的坐標的性質(zhì)
建立了平面直角坐標系后,對于坐標系平面內的`任何一點(diǎn),我們可以確定它的坐標。反過(guò)來(lái),對于任何一個(gè)坐標,我們可以在坐標平面內確定它所表示的一個(gè)點(diǎn)。
對于平面內任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線(xiàn),垂足在X軸、Y軸上的對應點(diǎn)a,b分別叫做點(diǎn)C的橫坐標、縱坐標,有序實(shí)數對(a,b)叫做點(diǎn)C的坐標。
一個(gè)點(diǎn)在不同的象限或坐標軸上,點(diǎn)的坐標不一樣。
希望上面對點(diǎn)的坐標的性質(zhì)知識講解學(xué)習,同學(xué)們都能很好的掌握,相信同學(xué)們會(huì )在考試中取得優(yōu)異成績(jì)的。
初中數學(xué)知識點(diǎn):因式分解的一般步驟
關(guān)于數學(xué)中因式分解的一般步驟內容學(xué)習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒(méi)有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個(gè)整式的積的形式。
相信上面對因式分解的一般步驟知識的內容講解學(xué)習,同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì )考出好成績(jì)。
初中數學(xué)知識點(diǎn):因式分解
下面是對數學(xué)中因式分解內容的知識講解,希望同學(xué)們認真學(xué)習。
因式分解
因式分解定義:把一個(gè)多項式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項式因式分解。
因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項式每項都含有的公共的因式,叫做這個(gè)多項式各項的公因式。
公因式確定方法:①系數是整數時(shí)取各項最大公約數。②相同字母取最低次冪③系數最大公約數與相同字母取最低次冪的積就是這個(gè)多項式各項的公因式。
提取公因式步驟:
、俅_定公因式。②確定商式③公因式與商式寫(xiě)成積的形式。
分解因式注意;
、俨粶蕘G字母
、诓粶蕘G常數項注意查項數
、垭p重括號化成單括號
、芙Y果按數單字母單項式多項式順序排列
、菹嗤蚴綄(xiě)成冪的形式
、奘醉椮撎柗爬ㄌ柾
、呃ㄌ杻韧(lèi)項合并。
通過(guò)上面對因式分解內容知識的講解學(xué)習,相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內容給同學(xué)們的學(xué)習很好的幫助。
初中數學(xué)知識點(diǎn)總結2
一.圓的定義
1.平面上到定點(diǎn)的距離等于定長(cháng)的所有點(diǎn)組成的圖形叫做圓。
2.平面上一條線(xiàn)段,繞它的一端旋轉360°,留下的軌跡叫圓。
二.圓心
1.定義1中的定點(diǎn)為圓心。
2.定義2中繞的那一端的端點(diǎn)為圓心。
3.圓任意兩條對稱(chēng)軸的交點(diǎn)為圓心。
4.垂直于圓內任意一條弦且兩個(gè)端點(diǎn)在圓上的線(xiàn)段的二分點(diǎn)為圓心。
注:圓心一般用字母O表示
5.直徑:通過(guò)圓心,并且兩端都在圓上的線(xiàn)段叫做圓的直徑。直徑一般用字母d表示。
6.半徑:連接圓心和圓上任意一點(diǎn)的線(xiàn)段,叫做圓的半徑。半徑一般用字母r表示。
7.圓的直徑和半徑都有無(wú)數條。圓是軸對稱(chēng)圖形,每條直徑所在的直線(xiàn)是圓的對稱(chēng)軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=二分之d。
8.圓的半徑或直徑?jīng)Q定圓的大小,圓心決定圓的位置。
三.圓的'基本性質(zhì)
1.圓的對稱(chēng)性
(1)圓是軸對稱(chēng)圖形,它的對稱(chēng)軸是直徑所在的直線(xiàn)。
(2)圓是中心對稱(chēng)圖形,它的對稱(chēng)中心是圓心。
(3)圓是旋轉對稱(chēng)圖形。
2.垂徑定理
(1)垂直于弦的直徑平分這條弦,且平分這條弦所對的兩條弧。
(2)推論:
平分弦(非直徑)的直徑,垂直于弦且平分弦所對的兩條弧。
平分弧的直徑,垂直平分弧所對的弦。
3.圓心角的度數等于它所對弧的度數。圓周角的度數等于它所對弧度數的一半。
(1)同弧所對的圓周角相等。
(2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。
4.在同圓或等圓中,兩條弦、兩條弧、兩個(gè)圓周角、兩個(gè)圓心角、兩條弦心距五對量中只要有一對量相等,其余四對量也分別相等。
5.夾在平行線(xiàn)間的兩條弧相等。
(1)過(guò)兩點(diǎn)的圓的圓心一定在兩點(diǎn)間連線(xiàn)段的中垂線(xiàn)上。
(2)不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓,圓心是三邊中垂線(xiàn)的交點(diǎn),它到三個(gè)點(diǎn)的距離相等。
(直角三角形的外心就是斜邊的中點(diǎn)。)
6.直線(xiàn)與圓的位置關(guān)系。d表示圓心到直線(xiàn)的距離,r表示圓的半徑。
直線(xiàn)與圓有兩個(gè)交點(diǎn),直線(xiàn)與圓相交;直線(xiàn)與圓只有一個(gè)交點(diǎn),直線(xiàn)與圓相切;直線(xiàn)與圓沒(méi)有交點(diǎn),直線(xiàn)與圓相離。
四.圓和圓
1.兩個(gè)圓沒(méi)有公共點(diǎn)且每個(gè)圓的點(diǎn)都在另一個(gè)圓的外部時(shí),叫做這兩個(gè)圓的外離。
2.兩個(gè)圓有唯一的公共點(diǎn)且除了這個(gè)公共點(diǎn)外,每個(gè)圓上的點(diǎn)都在另一個(gè)圓的外部,叫做兩個(gè)圓的外切。
3.兩個(gè)圓有兩個(gè)交點(diǎn),叫做兩個(gè)圓的相交。
4.兩個(gè)圓有唯一的公共點(diǎn)且除了這個(gè)公共點(diǎn)外,每個(gè)圓上的點(diǎn)都在另一個(gè)圓的內部,叫做兩個(gè)圓的內切。
5.兩個(gè)圓沒(méi)有公共點(diǎn)且每個(gè)圓的點(diǎn)都在另一個(gè)圓的內部時(shí),叫做這兩個(gè)圓的內含。
五.正多邊形和圓
1.正多邊形的概念:各邊相等,各角也相等的多邊形叫做正多邊形。
2.正多邊形與圓的關(guān)系:
(1)將一個(gè)圓n(n≥3)等分(可以借助量角器),依次連結各等分點(diǎn)所得的多邊形是這個(gè)圓的內接正多邊形。
(2)這個(gè)圓是這個(gè)正多邊形的外接圓。
初中數學(xué)知識點(diǎn)總結3
1、過(guò)兩點(diǎn)有且只有一條直線(xiàn)
2、兩點(diǎn)之間線(xiàn)段最短
3、同角或等角的補角相等——補角=180-角度。
4、同角或等角的余角相等——余角=90-角度。
5、過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直
6、直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短
7、平行公理:經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行
8、如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行
9、同位角相等,兩直線(xiàn)平行
10、內錯角相等,兩直線(xiàn)平行
11、同旁?xún)冉腔パa,兩直線(xiàn)平行
12、兩直線(xiàn)平行,同位角相等
13、兩直線(xiàn)平行,內錯角相等
14、兩直線(xiàn)平行,同旁?xún)冉腔パa
15、定理
xxx兩邊的和大于第三邊
16、推論
xxx兩邊的差小于第三邊
17、xxx內角和定理:
xxx三個(gè)內角的和等于180°
18、推論1
直角xxx的兩個(gè)銳角互余
19、推論2
xxx的一個(gè)外角等于和它不相鄰的兩個(gè)內角的和
20、推論3
xxx的一個(gè)外角大于任何一個(gè)和它不相鄰的內角
21、全等xxx的對應邊、對應角相等
22、邊角邊公理(SAS):有兩邊和它們的夾角對應相等的兩個(gè)xxx全等
23、角邊角公理(ASA):有兩角和它們的夾邊對應相等的
兩個(gè)xxx全等
24、推論(AAS):有兩角和其中一角的對邊對應相等的兩個(gè)xxx全等
25、邊邊邊公理(SSS):有三邊對應相等的兩個(gè)xxx全等
26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對應相等的兩個(gè)直角xxx全等
27、定理1
在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等
28、定理2
到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上
29、角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合
30、推論1
等腰xxx頂角的平分線(xiàn)平分底邊并且垂直于底邊
31、推論2
等腰xxx的頂角平分線(xiàn)、底邊上的中線(xiàn)和底邊上的高互相重合,即三線(xiàn)合一;
32、推論3
等邊xxx的各角都相等,并且每一個(gè)角都等于60°
33、等腰xxx的判定定理
如果一個(gè)xxx有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)
34、等腰xxx的性質(zhì)定理
等腰xxx的兩個(gè)底角相等
(即等邊對等角)
35、推論1
三個(gè)角都相等的xxx是等邊xxx
36、推論
有一個(gè)角等于60°的等腰xxx是等邊xxx
37、在直角xxx中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半
38、直角xxx斜邊上的中線(xiàn)等于斜邊上的一半
39、定理
線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等
40、逆定理
和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上
41、線(xiàn)段的垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42、定理1
關(guān)于某條直線(xiàn)對稱(chēng)的'兩個(gè)圖形是全等形
43、定理
如果兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),那么對稱(chēng)軸是對應點(diǎn)連線(xiàn)的垂直平分線(xiàn)
44、定理3
兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),如果它們的對應線(xiàn)段或延長(cháng)線(xiàn)相交,那么交點(diǎn)在對稱(chēng)軸上
45、逆定理
如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對稱(chēng)
46、勾股定理
直角xxx兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理
如果xxx的三邊長(cháng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)xxx是直角xxx
48、定理
四邊形的內角和等于360°
49、四邊形的外角和等于360°
50、多邊形內角和定理
n邊形的內角的和等于(n-2)×180°
51、推論
任意多邊的外角和等于360°
52、平行四邊形性質(zhì)定理1
平行四邊形的對角相等
53、平行四邊形性質(zhì)定理2
平行四邊形的對邊相等
54、推論
夾在兩條平行線(xiàn)間的平行線(xiàn)段相等
55、平行四邊形性質(zhì)定理3
平行四邊形的對角線(xiàn)互相平分
56、平行四邊形判定定理1
兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2
兩組對邊分別相等的四邊
形是平行四邊形
58、平行四邊形判定定理3
對角線(xiàn)互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4
一組對邊平行相等的四邊形是平行四邊形
60、矩形性質(zhì)定理1
矩形的四個(gè)角都是直角
61、矩形性質(zhì)定理2
矩形的對角線(xiàn)相等
62、矩形判定定理1
有三個(gè)角是直角的四邊形是矩形
63、矩形判定定理2
對角線(xiàn)相等的平行四邊形是矩形
64、菱形性質(zhì)定理1
菱形的四條邊都相等
65、菱形性質(zhì)定理2
菱形的對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角
66、菱形面積=對角線(xiàn)乘積的一半,即S=(a×b)÷2
67、菱形判定定理1
四邊都相等的四邊形是菱形
68、菱形判定定理2
對角線(xiàn)互相垂直的平行四邊形是菱形
69、正方形性質(zhì)定理1
正方形的四個(gè)角都是直角,四條邊都相等
70、正方形性質(zhì)定理2
正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每條對角線(xiàn)平分一組對角
71、定理1
關(guān)于中心對稱(chēng)的兩個(gè)圖形是全等的
72、定理2
關(guān)于中心對稱(chēng)的兩個(gè)圖形,對稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對稱(chēng)中心,并且被對稱(chēng)中心平分
73、逆定理
如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱(chēng)
74、等腰梯形性質(zhì)定理
等腰梯形在同一底上的兩個(gè)角相等
75、等腰梯形的兩條對角線(xiàn)相等
76、等腰梯形判定定理
在同一底上的兩個(gè)角相等的梯
形是等腰梯形
77、對角線(xiàn)相等的梯形是等腰梯形
78、平行線(xiàn)等分線(xiàn)段定理
如果一組平行線(xiàn)在一條直線(xiàn)上截得的線(xiàn)段相等,那么在其他直線(xiàn)上截得的線(xiàn)段也相等
79、推論1
經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線(xiàn),必平分另一腰
80、推論2
經(jīng)過(guò)xxx一邊的中點(diǎn)與另一邊平行的直線(xiàn),必平分第三邊
81、xxx中位線(xiàn)定理
xxx的中位線(xiàn)平行于第三邊,并且等于它的一半
82、梯形中位線(xiàn)定理
梯形的中位線(xiàn)平行于兩底,并且等于兩底和的一半
L=(a+b)÷2
S=L×h
83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc
如果
ad=bc,那么a:b=c:d
84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行線(xiàn)分線(xiàn)段成比例定理
三條平行線(xiàn)截兩條直線(xiàn),所得的對應線(xiàn)段成比例
87、推論
平行于xxx一邊的直線(xiàn)截其他兩邊(或兩邊的延長(cháng)線(xiàn)),所得的對應線(xiàn)段成比例
88、定理
如果一條直線(xiàn)截xxx的兩邊(或兩邊的延長(cháng)線(xiàn))所得的對應線(xiàn)段成比例,那么這條直線(xiàn)平行于xxx的第三邊
89、平行于xxx的一邊,并且和其他兩邊相交的直線(xiàn),所截得的xxx的三邊與原xxx三邊對應成比例
90、定理
平行于xxx一邊的直線(xiàn)和其他兩邊(或兩邊的延長(cháng)線(xiàn))相交,所構成的xxx與原xxx相似
91、相似xxx判定定理1
兩角對應相等,兩xxx相似(ASA)
92、直角xxx被斜邊上的高分成的兩個(gè)直角xxx和原xxx相似
93、判定定理2
兩邊對應成比例且?jiàn)A角相等,兩xxx相似(SAS)
94、判定定理3
三邊對應成比例,兩xxx相似(SSS)
95、定理
如果一個(gè)直角xxx的斜邊和一條直角邊與另一個(gè)直角xxx的斜邊和一條直角邊對應成比例,那么這兩個(gè)直角xxx相似(HL)
96、性質(zhì)定理1
相似xxx對應高的比,對應中線(xiàn)的比與對應角平分線(xiàn)的比都等于相似比
97、性質(zhì)定理2
相似xxx周長(cháng)的比等于相似比
98、性質(zhì)定理3
相似xxx面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)
100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)
101、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合
102、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合
103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
104、同圓或等圓的半徑相等
105、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓
106、和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著(zhù)條線(xiàn)段的垂直平分線(xiàn)
107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線(xiàn)
108、到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn)
109、定理
不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
110、垂徑定理
垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111、推論1
、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條弧
、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條。ㄖ睆剑
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
112、推論2
圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形
114、定理
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論
在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
116、定理
一條弧所對的圓周角等于它所對的圓心角的一半
117、推論1
同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2
半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3
如果xxx一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)xxx是直角xxx
120、定理
圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角
121、①直線(xiàn)L和⊙O相交
0
、谥本(xiàn)L和⊙O相切
d=r
、壑本(xiàn)L和⊙O相離
d>r
122、切線(xiàn)的判定定理
經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)
123、切線(xiàn)的性質(zhì)定理
圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑
124、推論1
經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)
125、推論2
經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心
126、切線(xiàn)長(cháng)定理
從圓外一點(diǎn)引圓的兩條切線(xiàn)相交與一點(diǎn),它們的切線(xiàn)長(cháng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理
弦切角等于它所夾的弧對的圓周角?
129、推論
如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等
130、相交弦定理
圓內的兩條相交弦,被交點(diǎn)分成的兩條線(xiàn)段長(cháng)的積相等
131、推論
如果弦與直徑垂直相交,那么弦的一半是它分直徑xxx的兩條線(xiàn)段的比例中項
132、切割線(xiàn)定理
從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(cháng)是這點(diǎn)到割線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(cháng)的比例中項?
133、推論
從圓外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條
割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(cháng)的積相等
134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上
135、①兩圓外離
d>R+r
、趦蓤A外切
d=R+r
、蹆蓤A相交
R-r<d<R+r(R>r)
、軆蓤A內切
d=R-r(R>r)
、輧蓤A內含
d<R-r(R>r)
136、定理
相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦
137、定理
把圓平均分成n(n≥3):
、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形
、平(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
138、定理
任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓
139、正n邊形的每個(gè)內角都等于(n-2)×180°/n
140、定理
正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角xxx
141、正n邊形的面積Sn=pn*rn/2
p表示正n邊形的周長(cháng)
142、正xxx面積√3a^2/4
a表示邊長(cháng)
143、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長(cháng)計算公式:L=n兀R/180——》L=nR
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內公切線(xiàn)長(cháng)=d-(R-r)
外公切線(xiàn)長(cháng)=d-(R+r)
初中數學(xué)知識點(diǎn)總結4
1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。
2、菱形的性質(zhì):
、啪匦尉哂衅叫兴倪呅蔚囊磺行再|(zhì);
、屏庑蔚乃臈l邊都相等;
、橇庑蔚膬蓷l對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角。
、攘庑问禽S對稱(chēng)圖形。
提示:利用菱形的性質(zhì)可證得線(xiàn)段相等、角相等,它的對角線(xiàn)互相垂直且把菱形分成四個(gè)全等的直角三角形,由此又可與勾股定理聯(lián)系,可得對角線(xiàn)與邊之間的關(guān)系,即邊長(cháng)的平方等于對角線(xiàn)一半的平方和。
3、因式分解定義:把一個(gè)多項式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項式因式分解。
4、因式分解要素:
、俳Y果必須是整式
、诮Y果必須是積的形式
、劢Y果是等式
、芤蚴椒纸馀c整式乘法的關(guān)系:m(a+b+c)
5、公因式:一個(gè)多項式每項都含有的公共的因式,叫做這個(gè)多項式各項的公因式。
6、公因式確定方法:
、傧禂凳钦麛禃r(shí)取各項最大公約數。
、谙嗤帜溉∽畹痛蝺
、巯禂底畲蠊s數與相同字母取最低次冪的積就是這個(gè)多項式各項的公因式。
7、提取公因式步驟:
、俅_定公因式。
、诖_定商式
、酃蚴脚c商式寫(xiě)成積的'形式。
8、平方根表示法:一個(gè)非負數a的平方根記作,讀作正負根號a。a叫被開(kāi)方數。
9、中被開(kāi)方數的取值范圍:被開(kāi)方數a≥0
10、平方根性質(zhì):
、僖粋(gè)正數的平方根有兩個(gè),它們互為相反數。
、0的平方根是它本身0。
、圬摂禌](méi)有平方根開(kāi)平方;求一個(gè)數的平方根的運算,叫做開(kāi)平方。
11、平方根與算術(shù)平方根區別:定義不同、表示方法不同、個(gè)數不同、取值范圍不同。
12、聯(lián)系:二者之間存在著(zhù)從屬關(guān)系;存在條件相同;0的算術(shù)平方根與平方根都是0
13、含根號式子的意義:表示a的平方根,表示a的算術(shù)平方根,表示a的負的平方根。
14、求正數a的算術(shù)平方根的方法;
完全平方數類(lèi)型:
、傧胝l(shuí)的平方是數a。
、谒詀的平方根是多少。
、塾檬阶颖硎。
求正數a的算術(shù)平方根,只需找出平方后等于a的正數。
初中數學(xué)知識點(diǎn)總結5
1、乘法與因式分解
a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2)
2、三角不等式
|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b
如數軸所示,化簡(jiǎn)下列各數
|a|,|b|,|c|,|a-b|,|a-c|,|b+c|
解:由題知道,因為a>0,b<0,c<0,a-b>0,a-c>0,b+c<0,
所以|a|=a,|b|=-b,|c|=-c,|a-b|=a-b,|a-c|=a-c,|b+c|=-(b+c)=-b-c
3.絕對值的性質(zhì)
任何一個(gè)有理數的絕對值都是非負數,也就是說(shuō)絕對值具有非負性。所以,a取任何有理數,都有|a|≥0。即⑴0的絕對值是0;絕對值是0的數是0.即:a=0<═>|a|=0;
、埔粋(gè)數的絕對值是非負數,絕對值最小的數是0.即:|a|≥0;
、侨魏螖档慕^對值都不小于原數。即:|a|≥a;
、冉^對值是相同正數的數有兩個(gè),它們互為相反數。即:若|x|=a(a>0),則x=±a;
、苫橄喾磾档膬蓴档慕^對值相等。即:|-a|=|a|或若a+b=0,則|a|=|b|;
、式^對值相等的兩數相等或互為相反數。即:|a|=|b|,則a=b或a=-b;
、巳魩讉(gè)數的絕對值的和等于0,則這幾個(gè)數就同時(shí)為0。即|a|+|b|=0,則a=0且b=0。
(非負數的常用性質(zhì):若幾個(gè)非負數的和為0,則有且只有這幾個(gè)非負數同時(shí)為0)
如何整理數學(xué)學(xué)科課堂筆記
一、內容提綱。老師講課大多有提綱,并且講課時(shí)老師會(huì )將一堂課的線(xiàn)索脈絡(luò )、重點(diǎn)難點(diǎn)等,簡(jiǎn)明清晰地呈現在黑板上。同時(shí),教師會(huì )使之富有條理性和直觀(guān)性。記下這些內容提綱,便于課后復習回顧,整體把握知識框架,對所學(xué)知識做到胸有成竹、清晰完整。
二、疑難問(wèn)題。將課堂上未聽(tīng)懂的問(wèn)題及時(shí)記下來(lái),便于課后請教同學(xué)或老師,把問(wèn)題弄懂弄通。教師在組織課堂教學(xué)時(shí),受到時(shí)空的限制,不可能做到顧及每一位同學(xué)。相應的,一些問(wèn)題對部分學(xué)生來(lái)說(shuō),是屬于疑難問(wèn)題,由于課堂上來(lái)不及思考成熟,記下疑難問(wèn)題,可在課后繼續加以思考和探究,加以理解和掌握,不致出現知識的斷層、方法的缺陷。
三、思路方法。對老師在課堂上介紹的解題方法和分析思路也應及時(shí)記下,課后加以消化,若有疑惑,先作獨立分析,因為有可能是自己理解錯誤造成的,也有可能是老師講課疏忽造成的,記下來(lái)后,便于課后及時(shí)與老師商榷和探討。勤記老師講的解題技巧、思路及方法,這對于啟迪思維,開(kāi)闊視野,開(kāi)發(fā)智力,培養能力,并對提高解題水平大有益處。在這基礎上,若能主動(dòng)鉆研,另辟蹊徑,則更難能可貴。
四、歸納總結。注意記下老師的課后總結,這對于濃縮一堂課的內容,找出重點(diǎn)及各部分之間的聯(lián)系,掌握基本概念、公式、定理,尋找規律,融會(huì )貫通課堂內容都很有作用。同時(shí),很多有經(jīng)驗的老師在課后小結時(shí),一方面是承上歸納所學(xué)內容,另一方面又是啟下布置預習任務(wù)或點(diǎn)明后面所要學(xué)的內容,做好筆記可以把握學(xué)習的主動(dòng)權,提前作準備,做到目標任務(wù)明確。
五、錯誤反思。學(xué)習過(guò)程中不可避免地會(huì )犯這樣或那樣的錯誤,記下自己所犯的.錯誤,并用紅筆醒目地加以標注,以警示自己,同時(shí)也應注明錯誤成因,正確思路及方法,在反思中成熟,在反思中提高。
數學(xué)常用解題技巧有哪些
第一,應堅持由易到難的做題順序。近年來(lái)高考數學(xué)試題的設置是8道選擇題、6道填空題、6到大題,通常稱(chēng)為866結構。在實(shí)體設置的結構中有三個(gè)小高峰,選擇題是由易到難,最難的題是第8題。填空題同樣是這樣設置的。也是第9題容易到第14題最難,大題從第15題到第20題,它們的設置也是這樣的。根據這樣的試題結構,應先做前面容易的,基礎好一點(diǎn)的考生就先做前7個(gè)選擇,前5個(gè)填空、前5個(gè)大題,稱(chēng)為是755結構;A差的就是644,先把自己能做的、會(huì )做的拿到手。這是第一點(diǎn)。
第二,審題是關(guān)鍵。把題給看清楚了再動(dòng)筆答題,看清楚題以后問(wèn)什么、已知什么、讓你做什么,把這些問(wèn)題搞清楚了,自己制訂了一個(gè)完整的解題策略,在開(kāi)始寫(xiě)的時(shí)候,這個(gè)時(shí)候是很快就可以完成的。
第三,屬于非智力因素導致想不起來(lái)。本來(lái)是很簡(jiǎn)單的題比如說(shuō)是做到第三題、第四題的時(shí)候不是難題,但想不起來(lái)了,卡住了,這時(shí)候怎么辦?雖然是簡(jiǎn)單題卻不會(huì )做怎么辦?應先跳過(guò)去,不是這道題不會(huì )做嗎?后面還有很多的簡(jiǎn)單題呢,把后面的題做一做,不要在考場(chǎng)上愣神,先跳過(guò)去做其他的題,等穩定下來(lái)以后再回過(guò)頭來(lái)看會(huì )頓悟,豁然開(kāi)朗。
第四,做選擇題的時(shí)候應運用最好的解題方法。因為選擇題和填空題都是看結果不看過(guò)程,因此在這個(gè)過(guò)程中都應不擇手段,只要是能把正確的結論找到就行?忌S玫姆椒ㄊ侵苯臃,從已知的開(kāi)始也不看它的四個(gè)選項,從頭到尾寫(xiě)完了之后一看答案就寫(xiě)上去了。另外就是特質(zhì)法(音),一些出現字母、特別是不等式,這時(shí)候給它賦一個(gè)值,代進(jìn)去這時(shí)候速度會(huì )比較快,正確地找出結果來(lái)。再就是數形結合法。最后實(shí)在不行了,就將四個(gè)選項代入驗證,看看哪個(gè)符合就是哪個(gè)了。填空題用上述的直接法、特質(zhì)法、數形結合法三種方法都適合。做大題的時(shí)候要特別注意解題步驟,規范答題可以減少失分。簡(jiǎn)單地說(shuō),規范答題就是從上一步的原因到下一步的結論,這是一個(gè)必然的過(guò)程,讓誰(shuí)寫(xiě)、誰(shuí)看都是這樣的。因為什么所以什么是一個(gè)必然的過(guò)程,這是規范答題。
學(xué)霸分享的數學(xué)復習技巧
1、把答案蓋住看例題
例題不能帶著(zhù)答案去看,不然會(huì )認為自己就是這么,其實(shí)自己并沒(méi)有理解透徹。
所以,在看例題時(shí),把解答蓋住,自己去做,做完或做不出時(shí)再去看。這時(shí)要想一想,自己做的哪里與解答不同,哪里沒(méi)想到,該注意什么,哪一種方法更好,還有沒(méi)有另外的解法。
經(jīng)過(guò)上面的訓練,自己的思維空間擴展了,看問(wèn)題也全面了。如果把題目徹底搞清了,在題后精煉幾個(gè)批注,說(shuō)明此題的“題眼”及巧妙之處,收獲會(huì )更大。
2、研究每題都考什么
數學(xué)能力的提高離不開(kāi)做題,“熟能生巧”這個(gè)簡(jiǎn)單的道理大家都懂。但做題不是搞題海戰術(shù),而是要通過(guò)一題聯(lián)想到很多題。
3、錯一次反思一次
每次業(yè)及考試或多或少會(huì )發(fā)生些錯誤,這并不可怕,要緊的是避免類(lèi)似的錯誤再次重現。因此平時(shí)注意把錯題記下來(lái)。
學(xué)生若能將每次考試或練習中出現的錯誤記錄下來(lái)分析,并盡力保證在下次考試時(shí)不發(fā)生同樣錯誤,那么以后人生中最重要的高考也就能避免犯錯了.
4、分析試卷總結經(jīng)驗
每次考試結束試卷發(fā)下來(lái),要認真分析得失,總結經(jīng)驗教訓。特別是將試卷中出現的錯誤進(jìn)行分類(lèi)。
數學(xué)解題方法分別有哪些
1、配方法
所謂的公式是使用變換解析方程的同構方法,并將其中的一些分配給一個(gè)或多個(gè)多項式正整數冪的和形式。通過(guò)配方解決數學(xué)問(wèn)題的公式。其中,用的最多的是配成完全平方式。匹配方法是數學(xué)中不斷變形的重要方法,其應用非常廣泛,在分解,簡(jiǎn)化根,它通常用于求解方程,證明方程和不等式,找到函數的極值和解析表達式。
2、因式分解法
因式分解是將多項式轉換為幾個(gè)積分產(chǎn)品的乘積。分解是恒定變形的基礎。除了引入中學(xué)教科書(shū)中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進(jìn)行因式分解。還有一些項目,如拆除物品的使用,根分解,替換,未確定的系數等等。
3、換元法
替代方法是數學(xué)中一個(gè)非常重要和廣泛使用的解決問(wèn)題的方法。我們通常稱(chēng)未知或變元。用新的參數替換原始公式的一部分或重新構建原始公式可以更簡(jiǎn)單,更容易解決。
4、判別式法與韋達定理
一元二次方程 ax2+ bx+ c=0( a、 b、 c屬于 R, a≠0)根的判別, = b2-4 ac,不僅用來(lái)確定根的性質(zhì),還作為一個(gè)問(wèn)題解決方法,代數變形,求解方程(組),求解不等式,研究函數,甚至幾何以及三角函數都有非常廣泛的應用。
韋達定理除了知道二次方程的根外,還找到另一根;考慮到兩個(gè)數的和和乘積的簡(jiǎn)單應用并尋找這兩個(gè)數,也可以找到根的對稱(chēng)函數并量化二次方程根的符號。求解對稱(chēng)方程并解決一些與二次曲線(xiàn)有關(guān)的問(wèn)題等,具有非常廣泛的應用。
5、待定系數法
在解決數學(xué)問(wèn)題時(shí),如果我們首先判斷我們所尋找的結果具有一定的形式,其中包含某些未決的系數,然后根據問(wèn)題的條件列出未確定系數的方程,最后找到未確定系數的值或這些待定系數之間的關(guān)系。為了解決數學(xué)問(wèn)題,這種問(wèn)題解決方法被稱(chēng)為待定系數法。它是中學(xué)數學(xué)中常用的方法之一。
6、構造法
在解決問(wèn)題時(shí),我們通常通過(guò)分析條件和結論來(lái)使用這些方法來(lái)構建輔助元素。它可以是一個(gè)圖表,一個(gè)方程(組),一個(gè)方程,一個(gè)函數,一個(gè)等價(jià)的命題等,架起連接條件和結論的橋梁。為了解決這個(gè)問(wèn)題,這種解決問(wèn)題的數學(xué)方法,我們稱(chēng)之為構造方法。運用結構方法解決問(wèn)題可以使代數,三角形,幾何等數學(xué)知識相互滲透,有助于解決問(wèn)題。
初中數學(xué)知識點(diǎn)總結10
一、初中數學(xué)基本概念
1.方程:含有未知數的等式叫做方程。
2.一元一次方程:只含有一個(gè)未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程。
3.二元一次方程:含有兩個(gè)未知數,并且未知數的次數是1的二元一次方程。
4.二元一次方程組:由兩個(gè)二元一次方程組成的方程組。
5.一元二次方程:含有一個(gè)未知數,并且未知數的最高次數是2的整式方程。
6.一元二次方程的解:使一元二次方程左右兩邊相等的未知數的值。
7.一元二次方程的根:一元二次方程的解。
8.一元二次方程的判別式:當a是正數時(shí),如果一元二次方程左右兩邊相等時(shí),那么這個(gè)一元二次方程有兩個(gè)不相等的實(shí)數根;當a是負數時(shí),如果一元二次方程左右兩邊相等時(shí),那么這個(gè)一元二次方程沒(méi)有實(shí)數根;當a是零時(shí),如果一元二次方程左右兩邊相等時(shí),那么這個(gè)一元二次方程有兩個(gè)相等的實(shí)數根。
9.函數:在某變化過(guò)程中有兩個(gè)變量x、y,如果對于x在某一范圍內的每一個(gè)確定的值,y都有唯一的值與它對應,那么稱(chēng)y是x的函數,x叫做自變量。
10.一次函數:在某個(gè)變化過(guò)程中有兩個(gè)變量x、y,如果對于x在某一范圍內的每一個(gè)確定的值,y都有唯一的值與它對應,那么稱(chēng)y是x的一次函數。
11.正比例函數:在某個(gè)變化過(guò)程中有兩個(gè)變量x、y,如果對于x在某一范圍內的每一個(gè)確定的值,y都有唯一的值與它對應,并且這個(gè)數值在比例上成正比,那么稱(chēng)y是x的比例函數。
12.反比例函數:在某個(gè)變化過(guò)程中有兩個(gè)變量x、y,如果對于x在某一范圍內的每一個(gè)確定的值,y都有唯一的值與它對應,并且這個(gè)數值在比例上成反比,那么稱(chēng)y是x的反比例函數。
13.平行四邊形:在同一個(gè)平面內兩組對角分別平行的四邊形叫做平行四邊形。
14.矩形:有一個(gè)內角是直角的平行四邊形叫做矩形。
15.菱形:有兩組鄰邊相等的平行四邊形叫做菱形。
16.正方形:四邊相等的矩形叫做正方形。
17.等腰梯形:兩條腰相等的梯形叫做等腰梯形。
18.三角形:在同一個(gè)平面內由不在同一條直線(xiàn)上的三條線(xiàn)段首尾順次相接所組成的圖形叫做三角形。
19.中線(xiàn):連接一個(gè)頂點(diǎn)和它對邊的中點(diǎn)的線(xiàn)段叫做中線(xiàn)。
20.高線(xiàn):從三角形的一個(gè)頂點(diǎn)向它的對邊作垂線(xiàn),垂足與頂點(diǎn)之間的線(xiàn)段叫做高線(xiàn)。
21.角平分線(xiàn):三角形的一個(gè)內角的平分線(xiàn)與它的對邊相交,這個(gè)角的頂點(diǎn)與交點(diǎn)之間的線(xiàn)段叫做角平分線(xiàn)。
22.中位線(xiàn):連接三角形兩邊中點(diǎn)的'線(xiàn)段叫做中位線(xiàn)。
23.軸對稱(chēng)圖形:一條物體沿一條直線(xiàn)折疊后,直線(xiàn)兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對稱(chēng)圖形。
24.直接開(kāi)平方法:形如x2=p或者(nx+m)2=p(p≥0)的一元二次方程可采用直接開(kāi)平方的方法解一元二次方程的方法。
25.配方法:把一元二次方程的常數項移到方程的右邊,兩邊加上一次項系數的一半的平方,再用右邊的式子除以左邊的式子,得到一個(gè)平方的形式,再用直接開(kāi)平方的方法求解一元二次方程的方法。
26.公式法:用求根公式解一元二次方程的方法。
27.因式分解法:將一元二次方程分解成兩個(gè)一次因式的積等于0的一元二次方程,然后將各個(gè)因式分解,得到一元一次方程,再用直接開(kāi)方法求解一元一次方程的方法。
二、初中數學(xué)基本運算
1.整式:?jiǎn)雾検胶投囗検降慕y稱(chēng)。
2.單項式:由數字和字母的積組成的代數式叫做單項式。單獨的一個(gè)數字或字母也叫做單項式。
3.多項式:幾個(gè)單項式的和叫做多項式。每個(gè)單項式叫做多項式的項。其中不含字母的項叫做常數
初中數學(xué)知識點(diǎn)總結11
1、不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1
、(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2
圓的兩條平行弦所夾的弧相等
3、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形
4、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合
5、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7、同圓或等圓的半徑相等
8、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓
9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。
11、定理:圓的.內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角
12、①直線(xiàn)L和⊙O相交d
、谥本(xiàn)L和⊙O相切d=r
、壑本(xiàn)L和⊙O相離d>r
13、切線(xiàn)的判定定理:經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)
14、切線(xiàn)的性質(zhì)定理:圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑
15、推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)
16、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心
17、切線(xiàn)長(cháng)定理:從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角
18、圓的外切四邊形的兩組對邊的和相等,外角等于內對角
19、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上
20、
、賰蓤A外離d>R+r
、趦蓤A外切d=R+r
、蹆蓤A相交R-rr)
、軆蓤A內切d=R-r(R>r)
、輧蓤A內含dr)
初中數學(xué)知識點(diǎn)總結12
代數部分:有理數、無(wú)理數、實(shí)數整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程組、二元二次方程組、分式方程、一元一次不等式函數(一次函數、二次函數、反比例函數)
幾何部分:線(xiàn)段、角相交線(xiàn)、平行線(xiàn)三角形、四邊形、相似形、圓。
1、實(shí)數的分類(lèi)
有理數:整數(包括:正整數、0、負整數)和分數(包括:有限小數和無(wú)限環(huán)循小數)都是有理數。如:—3,0.231,0.737373......
無(wú)理數:無(wú)限不環(huán)循小數叫做無(wú)理數如:π,—,0.1010010001......(兩個(gè)1之間依次多1個(gè)0)。
實(shí)數:有理數和無(wú)理數統稱(chēng)為實(shí)數。
2、無(wú)理數
在理解無(wú)理數時(shí),要抓住"無(wú)限不循環(huán)"這一時(shí)之,它包含兩層意思:一是無(wú)限小數;二是不循環(huán)。二者缺一不可。歸納起來(lái)有四類(lèi):
。1)開(kāi)方開(kāi)不盡的數,如等;
。2)有特定意義的數,如圓周率π,或化簡(jiǎn)后含有π的數,如+8等;
。3)有特定結構的數,如0.1010010001......等;
。4)某些三角函數,如sin60o等。
注意:判斷一個(gè)實(shí)數的屬性(如有理數、無(wú)理數),應遵循:一化簡(jiǎn),二辨析,三判斷。要注意:"神似"或"形似"都不能作為判斷的標準。
3、非負數:正實(shí)數與零的統稱(chēng)。(表為:x≥0)
常見(jiàn)的非負數有:
性質(zhì):若干個(gè)非負數的和為0,則每個(gè)非負擔數均為0。
4、數軸:規定了原點(diǎn)、正方向和單位長(cháng)度的直線(xiàn)叫做數軸(畫(huà)數軸時(shí),要注意上述規定的三要素缺一不可)。
解題時(shí)要真正掌握數形結合的思想,理解實(shí)數與數軸的點(diǎn)是一一對應的,并能靈活運用。
、佼(huà)一條水平直線(xiàn),在直線(xiàn)上取一點(diǎn)表示0(原點(diǎn)),選取某一長(cháng)度作為單位長(cháng)度,規定直線(xiàn)上向右的方向為正方向,就得到數軸("三要素")。
、谌魏我粋(gè)有理數都可以用數軸上的`一個(gè)點(diǎn)來(lái)表示。
、廴绻麅蓚(gè)數只有符號不同,那么我們稱(chēng)其中一個(gè)數為另外一個(gè)數的相反數,也稱(chēng)這兩個(gè)數互為相反數。
作用:A、直觀(guān)地比較實(shí)數的大;B、明確體現絕對值意義;C、建立點(diǎn)與實(shí)數的一一對應關(guān)系。
5、相反數
實(shí)數與它的相反數時(shí)一對數(只有符號不同的兩個(gè)數叫做互為相反數,零的相反數是零),從數軸上看,互為相反數的兩個(gè)數所對應的點(diǎn)關(guān)于原點(diǎn)對稱(chēng),如果a與b互為相反數,則有a+b=0,a=—b,反之亦成立。
即:(1)實(shí)數的相反數是。
初中數學(xué)知識點(diǎn)總結13
第十一章三角形
一、知識框架:
二、知識概念:
1.三角形:由不在同一直線(xiàn)上的三條線(xiàn)段首尾順次相接所組成的圖形叫做三角形.
2.三邊關(guān)系:三角形任意兩邊的和(大于或小于)第三邊,任意兩邊的差(大于或小于)第三邊.
3.高:從三角形的一個(gè)頂點(diǎn)向它的對邊所在直線(xiàn)作,頂點(diǎn)和間的線(xiàn)段叫做三角形的高.4.中線(xiàn):在三角形中,連接一個(gè)頂點(diǎn)和它對邊的線(xiàn)段叫做三角形的中線(xiàn).
5.角平分線(xiàn):三角形的一個(gè)內角的平分線(xiàn)與這個(gè)角的對邊相交,這個(gè)角的頂點(diǎn)和之間的線(xiàn)段叫做三角形的角平分線(xiàn).
6.三角形的穩定性:三角形的形狀是,三角形的這個(gè)性質(zhì)叫三角形的穩定性.
7.多邊形:在平面內,由一些線(xiàn)段首尾順次相接組成的圖形叫做多邊形.
8.多邊形的內角:多邊形兩邊組成的角叫做它的內角.
9.多邊形的外角:多邊形的一邊與它的鄰邊的線(xiàn)組成的角叫做多邊形的外角.
10.多邊形的對角線(xiàn):連接多邊形的兩個(gè)頂點(diǎn)的線(xiàn)段,叫做多邊形的對角線(xiàn).
11.正多邊形:在平面內,各個(gè)角都相等,各條邊都相等的多邊形叫正多邊形.
12.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面,
13.公式與性質(zhì):
、湃切蔚膬冉呛停喝切蔚膬冉呛蜑槎。
、迫切瓮饨堑男再|(zhì):
性質(zhì)1:三角形的一個(gè)外角等于和它不相鄰的的和.
性質(zhì)2:三角形的一個(gè)外角大于任何一個(gè)和它的內角.
、嵌噙呅蝺冉呛凸剑簄邊形的內角和等于。
學(xué)無(wú)慮課后輔導中心編制
、榷噙呅蔚耐饨呛停憾噙呅蔚耐饨呛蜑槎.
、啥噙呅螌蔷(xiàn)的條數:
、購膎邊形的一個(gè)頂點(diǎn)出發(fā)可以引條對角線(xiàn),把多邊形分成個(gè)三角形.
、趎邊形共有條對角線(xiàn).
第十二章全等三角形
一、知識框架:
二、知識概念:
1.基本定義:
、湃刃危耗軌蛲耆'兩個(gè)圖形叫做全等形.
、迫热切危耗軌蛲耆膬蓚(gè)三角形叫做全等三角形.
、菍旤c(diǎn):全等三角形中互相的頂點(diǎn)叫做對應頂點(diǎn).
、葘叄喝热切沃谢ハ嗟倪吔凶鰧.
、蓪牵喝热切沃谢ハ嗟慕墙凶鰧.
2.基本性質(zhì):
、湃切蔚姆定性:三角形三邊的確定了,這個(gè)三角形的形狀、大小就全確定,這個(gè)性質(zhì)叫做三角形的穩定性.
、迫热切蔚男再|(zhì):全等三角形的相等,對應角相等.
3.全等三角形的判定定理:
、胚呥呥叄⊿SS):。
、七吔沁叄⊿AS):。
、墙沁吔牵ˋSA):。
、冉墙沁叄ˋAS):。
、尚边、直角邊(HL):。
4.角平分線(xiàn):⑴畫(huà)法:⑵性質(zhì)定理:角平分線(xiàn)上的點(diǎn)到角的兩邊的距離.⑶性質(zhì)定理的逆定理:角的內部到角的兩邊距離相等的點(diǎn)在角的上.
5.證明的基本方法:
、琶鞔_命題中的已知和求證.(包括隱含條件,如公共邊、公共角、對頂角、角平分線(xiàn)、中線(xiàn)、高、等腰三角形等所隱含的邊角關(guān)系)⑵根據題意,畫(huà)出圖形,并用數字符號表示已知和求證.⑶經(jīng)過(guò)分析,找出由已知推出求證的途徑,寫(xiě)出證明過(guò)程.
第十三章軸對稱(chēng)
一、知識框架:
二、知識概念:
1.基本概念:
、泡S對稱(chēng)圖形:如果一個(gè)圖形沿一條直線(xiàn)折疊,直線(xiàn)兩旁的部分能夠互相,這個(gè)圖形就叫做軸對稱(chēng)圖形.
、苾蓚(gè)圖形成軸對稱(chēng):把一個(gè)圖形沿某一條直線(xiàn)折疊,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這條直線(xiàn)對稱(chēng).⑶線(xiàn)段的垂直平分線(xiàn):經(jīng)過(guò)線(xiàn)段中點(diǎn)并且這條線(xiàn)段的直線(xiàn),叫做這條線(xiàn)段的垂直平分線(xiàn).
、鹊妊切危河袃蓷l邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角.
、傻冗吶切危憾枷嗟鹊娜切谓凶龅冗吶切.2.基本性質(zhì):⑴對稱(chēng)的性質(zhì):①不管是軸對稱(chēng)圖形還是兩個(gè)圖形關(guān)于某條直線(xiàn)對稱(chēng),對稱(chēng)軸都是任何一對對應點(diǎn)所連線(xiàn)段的垂直平分線(xiàn).②對稱(chēng)的圖形都全等.⑵線(xiàn)段垂直平分線(xiàn)的性質(zhì):①線(xiàn)段垂直平分線(xiàn)上的點(diǎn)與這條線(xiàn)段的距離相等.②與一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線(xiàn)段的上.⑶關(guān)于坐標軸對稱(chēng)的點(diǎn)的坐標性質(zhì)①點(diǎn)P(x,y)關(guān)于x軸對稱(chēng)的點(diǎn)的坐標為P"(,).②點(diǎn)P(x,y)關(guān)于y軸對稱(chēng)的點(diǎn)的坐標為P"(,).⑷等腰三角形的性質(zhì):
、俚妊切蝺裳.
、诘妊切蝺傻捉窍嗟龋ǖ冗厡Φ冉牵.
、鄣妊切蔚、,相互重合.④等腰三角形是圖形,對稱(chēng)軸是三線(xiàn)合一(1條).⑸等邊三角形的性質(zhì):
、俚冗吶切稳叾枷嗟.
、诘冗吶切稳齻(gè)內角都相等,都等于度。③等邊三角形每條邊上都存在三線(xiàn)合一.
、艿冗吶切问禽S對稱(chēng)圖形,對稱(chēng)軸是三線(xiàn)合一(3條).3.基本判定:
、诺妊切蔚呐卸ǎ
、傧嗟鹊娜切问堑妊切.
、谌绻粋(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也(等角對等邊).
、频冗吶切蔚呐卸ǎ
、俣枷嗟鹊娜切问堑冗吶切.②三個(gè)角都相等的三角形是三角形.
、塾幸粋(gè)角是度。的等腰三角形是等邊三角形.
4.基本方法:
、抛鲆阎本(xiàn)的垂線(xiàn):
、谱鲆阎(xiàn)段的垂直平分線(xiàn):
、亲鲗ΨQ(chēng)軸:連接兩個(gè)對應點(diǎn),作所連線(xiàn)段的垂直平分線(xiàn).
、茸饕阎獔D形關(guān)于某直線(xiàn)的對稱(chēng)圖形:
、稍谥本(xiàn)上做一點(diǎn),使它到該直線(xiàn)同側的兩個(gè)已知點(diǎn)的距離之和最短.
第十四章整式的乘除與分解因式
一、知識框架:
整式乘法乘法法則整式除法因式分解
二、知識概念:
基本運算:⑴同底數冪的乘法公式:。⑵冪的乘方公式:。⑶積的乘方公式:。
2.整式的乘法:⑴單項式單項式:系數,同字母,不同字母為積的因式.⑵單項式多項式:。⑶多項式多項式:.
3.計算公式:
、牌椒讲罟剑篴babab
222222⑵完全平方公式:aba2abb;aba2abb
224.整式的除法:
、磐讛祪绲某ǎ篴aamnmn
、茊雾検絾雾検剑合禂,同字母,不同字母作為商的因式.⑶多項式單項式:.⑷多項式多項式:用豎式.
5.因式分解:把一個(gè)多項式化成的積的形式,這種變形叫做把這個(gè)式子因式分解.
6.因式分解方法:
、盘峁蚴椒ǎ赫页鲎畲蠊蚴.⑵公式法:①平方差公式:。②完全平方公式:。③立方和:。④立方差:。⑶十字相乘法:。⑷拆項法⑸添項法第十五章分式一、知識框架:
二、知識概念:A1.分式:形如,A、B是整式,B中含有字母且B不等于的整式叫做分式.其中AB叫做分式的,B叫做分式的2.分式有意義的條件:分母不等于.3.分式的基本性質(zhì):分式的分子和分母同時(shí)乘以(或除以)同一個(gè)不為的整式,分式的值不變.4.約分:把一個(gè)分式的分子和分母的(不為1的數)約去,這種變形稱(chēng)為約分.5.通分:異分母的分式可以化成的分式,這一過(guò)程叫做通分.
6.最簡(jiǎn)分式:一個(gè)分式的分子和分母沒(méi)有時(shí),這個(gè)分式稱(chēng)為最簡(jiǎn)分式,約分時(shí),一般將一個(gè)分式化為最簡(jiǎn)分式.7.分式的四則運算:
、磐帜阜质郊訙p法則:同分母的分式相加減,分母,把相加減.用字
母表示
為:。
、飘惙帜阜质郊訙p法則:異分母的分式相加減,先,化為同分母的分
式,然后再按同分母分式的加減法法則進(jìn)行計算.用字母表示為:。
、欠质降某朔ǚ▌t:兩個(gè)分式相乘,把相乘的積作為積的分子,把相乘的積作為積的分母.用字母表示為:。
、确质降某ǚ▌t:兩個(gè)分式相除,把除式的和顛倒位置后再與被除式相乘.用字母表示為:。⑸分式的乘方法則:、分別乘方.用字母表示為:。8.整數指數冪:⑴aaam⑵amnmn(m、n是正整數)namn(m、n是正整數)nn⑶abab(n是正整數)n⑷aaanmnmn(a0,m、n是正整數,mn)ana⑸n(n是正整數)bb⑹an1(a0,n是正整數)na9.分式方程的意義:分母中含有未知數的方程叫做分式方程.10.分式方程的解法:
、(方程兩邊同時(shí)乘以最簡(jiǎn)公分母,將分式方程化為整式方程);②按解整式方程的步驟求出未知數的值;
、(求出未知數的值后必須驗根,因為在把分式方程化為整式方程的過(guò)程中,擴大了未知數的取值范圍,可能產(chǎn)生增根).
初中數學(xué)知識點(diǎn)總結14
定義
對應角相等,對應邊成比例的兩個(gè)三角形叫做相似三角形
比值與比的概念
比值是一個(gè)具體的數字如:AB/EF=2
而比不是一個(gè)具體的數字如:AB/EF=2:1判定方法
證兩個(gè)相似三角形應該把表示對應頂點(diǎn)的字母寫(xiě)在對應的位置上。如果是文字語(yǔ)言的.“△ABC與△DEF相似”,那么就說(shuō)明這兩個(gè)三角形的對應頂點(diǎn)可能沒(méi)有寫(xiě)在對應的位置上,而如果是符號語(yǔ)言的“△ABC∽△DEF”,那么就說(shuō)明這兩個(gè)三角形的對應頂點(diǎn)寫(xiě)在了對應的位置上。
方法一(預備定理)
平行于三角形一邊的直線(xiàn)截其它兩邊所在的直線(xiàn),截得的三角形與原三角形相似。(這是相似三角形判定的定理,是以下判定方法證明的基礎。這個(gè)引理的證明方法需要平行線(xiàn)與線(xiàn)段成比例的證明)
方法二
如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對應相等,那么這兩個(gè)三角形相似。
方法三
如果兩個(gè)三角形的兩組對應邊成比例,并且相應的夾角相等,
那么這兩個(gè)三角形相似
方法四
如果兩個(gè)三角形的三組對應邊成比例,那么這兩個(gè)三角形相似
方法五(定義)
對應角相等,對應邊成比例的兩個(gè)三角形叫做相似三角形
三個(gè)基本型
Z型A型反A型
方法六
兩個(gè)直角三角形中,斜邊與直角邊對應成比例,那么兩三角形相似。一定相似的三角形
1、兩個(gè)全等的三角形
(全等三角形是特殊的相似三角形,相似比為1:1)
2、兩個(gè)等腰三角形
(兩個(gè)等腰三角形,如果其中的任意一個(gè)頂角或底角相等,那么這兩個(gè)等腰三角形相似。)
3、兩個(gè)等邊三角形
(兩個(gè)等邊三角形,三角都是60度,且邊邊相等,所以相似)
4、直角三角形中由斜邊的高形成的三個(gè)三角形(母子三角形)
圖形的學(xué)習需要大家對于知識的詳細了解和滲透,而不是一帶而過(guò)。
初中數學(xué)知識點(diǎn)總結15
知識點(diǎn)總結
1.定義:兩組對邊分別平行的四邊形叫平行四邊形
2.平行四邊形的性質(zhì)
。1)平行四邊形的對邊平行且相等;
。2)平行四邊形的鄰角互補,對角相等;
。3)平行四邊形的對角線(xiàn)互相平分;
3.平行四邊形的判定
平行四邊形是幾何中一個(gè)重要內容,如何根據平行四邊形的性質(zhì),判定一個(gè)四邊形是平行四邊形是個(gè)重點(diǎn),下面就對平行四邊形的五種判定方法,進(jìn)行劃分:
第一類(lèi):與四邊形的對邊有關(guān)
。1)兩組對邊分別平行的`四邊形是平行四邊形;
。2)兩組對邊分別相等的四邊形是平行四邊形;
。3)一組對邊平行且相等的四邊形是平行四邊形;
第二類(lèi):與四邊形的對角有關(guān)
。4)兩組對角分別相等的四邊形是平行四邊形;
第三類(lèi):與四邊形的對角線(xiàn)有關(guān)
。5)對角線(xiàn)互相平分的四邊形是平行四邊形
常見(jiàn)考法
。1)利用平行四邊形的性質(zhì),求角度、線(xiàn)段長(cháng)、周長(cháng);
。2)求平行四邊形某邊的取值范圍;
。3)考查一些綜合計算問(wèn)題;
。4)利用平行四邊形性質(zhì)證明角相等、線(xiàn)段相等和直線(xiàn)平行;
。5)利用判定定理證明四邊形是平行四邊形。
誤區提醒
。1)平行四邊形的性質(zhì)較多,易把對角線(xiàn)互相平分,錯記成對角線(xiàn)相等;
。2)“一組對邊平行且相等的四邊形是平行四邊形”錯記成“一組對邊平行,一組對邊相等的四邊形是平行四邊形”后者不是平行四邊形的判定定理,它只是個(gè)等腰梯形。
【初中數學(xué)知識點(diǎn)總結】相關(guān)文章:
數學(xué)初中知識點(diǎn)總結03-27
初中數學(xué)知識點(diǎn)總結05-30
初中數學(xué)知識點(diǎn)總結10-24