當函數y=f(x)的自變量x在一點(diǎn)x0上產(chǎn)生一個(gè)增量Δx時(shí),函數輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時(shí)的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df(x0)/dx。
導數是函數的局部性質(zhì)。一個(gè)函數在某一點(diǎn)的導數描述了這個(gè)函數在這一點(diǎn)附近的變化率。如果函數的自變量和取值都是實(shí)數的話(huà),函數在某一點(diǎn)的導數就是該函數所代表的曲線(xiàn)在這一點(diǎn)上的切線(xiàn)斜率。
導數的本質(zhì)是通過(guò)極限的概念對函數進(jìn)行局部的線(xiàn)性逼近。例如在運動(dòng)學(xué)中,物體的位移對于時(shí)間的導數就是物體的瞬時(shí)速度。