97骚碰,毛片大片免费看,亚洲第一天堂,99re思思,色好看在线视频播放,久久成人免费大片,国产又爽又色在线观看

數學(xué)必修一函數知識點(diǎn)

時(shí)間:2024-03-03 22:29:39 好文 我要投稿
  • 相關(guān)推薦

數學(xué)必修一函數知識點(diǎn)

  在平日的學(xué)習中,很多人都經(jīng)常追著(zhù)老師們要知識點(diǎn)吧,知識點(diǎn)就是學(xué)習的重點(diǎn)。為了幫助大家更高效的學(xué)習,下面是小編精心整理的數學(xué)必修一函數知識點(diǎn),僅供參考,歡迎大家閱讀。

數學(xué)必修一函數知識點(diǎn)

數學(xué)必修一函數知識點(diǎn)1

  一、一次函數定義與定義式:

  自變量x和因變量y有如下關(guān)系:

  y=kx+b

  則此時(shí)稱(chēng)y是x的一次函數。

  特別地,當b=0時(shí),y是x的正比例函數。

  即:y=kx(k為常數,k≠0)

  二、一次函數的性質(zhì):

  1、y的變化值與對應的x的變化值成正比例,比值為k

  即:y=kx+b(k為任意不為零的實(shí)數b取任何實(shí)數)

  2、當x=0時(shí),b為函數在y軸上的截距。

  三、一次函數的圖像及性質(zhì):

  1、作法與圖形:通過(guò)如下3個(gè)步驟

 。1)列表;

 。2)描點(diǎn);

 。3)連線(xiàn),可以作出一次函數的圖像——一條直線(xiàn)。因此,作一次函數的圖像只需知道2點(diǎn),并連成直線(xiàn)即可。(通常找函數圖像與x軸和y軸的交點(diǎn))

  2、性質(zhì):(1)在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式:y=kx+b。(2)一次函數與y軸交點(diǎn)的坐標總是(0,b),與x軸總是交于(—b/k,0)正比例函數的圖像總是過(guò)原點(diǎn)。

  3、k,b與函數圖像所在象限:

  當k>0時(shí),直線(xiàn)必通過(guò)一、三象限,y隨x的增大而增大;

  當k<0時(shí),直線(xiàn)必通過(guò)二、四象限,y隨x的增大而減小。

  當b>0時(shí),直線(xiàn)必通過(guò)一、二象限;

  當b=0時(shí),直線(xiàn)通過(guò)原點(diǎn)

  當b<0時(shí),直線(xiàn)必通過(guò)三、四象限。

  特別地,當b=O時(shí),直線(xiàn)通過(guò)原點(diǎn)O(0,0)表示的是正比例函數的圖像。

  這時(shí),當k>0時(shí),直線(xiàn)只通過(guò)一、三象限;當k<0時(shí),直線(xiàn)只通過(guò)二、四象限。

  四、確定一次函數的表達式:

  已知點(diǎn)A(x1,y1);B(x2,y2),請確定過(guò)點(diǎn)A、B的一次函數的表達式。

 。1)設一次函數的表達式(也叫解析式)為y=kx+b。

 。2)因為在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式y=kx+b。所以可以列出2個(gè)方程:y1=kx1+b……①和y2=kx2+b……②

 。3)解這個(gè)二元一次方程,得到k,b的值。

 。4)最后得到一次函數的表達式。

  五、一次函數在生活中的應用:

  1、當時(shí)間t一定,距離s是速度v的一次函數。s=vt。

  2、當水池抽水速度f(wàn)一定,水池中水量g是抽水時(shí)間t的一次函數。設水池中原有水量S。g=S—ft。

  六、常用公式:

  1、求函數圖像的k值:(y1—y2)/(x1—x2)

  2、求與x軸平行線(xiàn)段的中點(diǎn):|x1—x2|/2

  3、求與y軸平行線(xiàn)段的中點(diǎn):|y1—y2|/2

  4、求任意線(xiàn)段的長(cháng):√(x1—x2)’2+(y1—y2)’2(注:根號下(x1—x2)與(y1—y2)的平方和)

  二次函數

  I、定義與定義表達式

  一般地,自變量x和因變量y之間存在如下關(guān)系:

  y=ax’2+bx+c

 。╝,b,c為常數,a≠0,且a決定函數的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大。)

  則稱(chēng)y為x的二次函數。

  二次函數表達式的右邊通常為二次三項式。

  II、二次函數的三種表達式

  一般式:y=ax’2+bx+c(a,b,c為常數,a≠0)

  頂點(diǎn)式:y=a(x—h)’2+k[拋物線(xiàn)的頂點(diǎn)P(h,k)]

  交點(diǎn)式:y=a(x—x?)(x—x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線(xiàn)]

  注:在3種形式的互相轉化中,有如下關(guān)系:

  h=—b/2ak=(4ac—b’2)/4ax?,x?=(—b±√b’2—4ac)/2a

  III、二次函數的圖像

  在平面直角坐標系中作出二次函數y=x’2的圖像,

  可以看出,二次函數的圖像是一條拋物線(xiàn)。

  IV、拋物線(xiàn)的性質(zhì)

  1、拋物線(xiàn)是軸對稱(chēng)圖形。對稱(chēng)軸為直線(xiàn)

  x=—b/2a。

  對稱(chēng)軸與拋物線(xiàn)的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。

  特別地,當b=0時(shí),拋物線(xiàn)的對稱(chēng)軸是y軸(即直線(xiàn)x=0)

  2、拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標為

  P(—b/2a,(4ac—b’2)/4a)

  當—b/2a=0時(shí),P在y軸上;當Δ=b’2—4ac=0時(shí),P在x軸上。

  3、二次項系數a決定拋物線(xiàn)的開(kāi)口方向和大小。

  當a>0時(shí),拋物線(xiàn)向上開(kāi)口;當a<0時(shí),拋物線(xiàn)向下開(kāi)口。

  |a|越大,則拋物線(xiàn)的開(kāi)口越小。

  4、一次項系數b和二次項系數a共同決定對稱(chēng)軸的位置。

  當a與b同號時(shí)(即ab>0),對稱(chēng)軸在y軸左;

  當a與b異號時(shí)(即ab<0),對稱(chēng)軸在y軸右。

  5、常數項c決定拋物線(xiàn)與y軸交點(diǎn)。

  拋物線(xiàn)與y軸交于(0,c)

  6、拋物線(xiàn)與x軸交點(diǎn)個(gè)數

  Δ=b’2—4ac>0時(shí),拋物線(xiàn)與x軸有2個(gè)交點(diǎn)。

  Δ=b’2—4ac=0時(shí),拋物線(xiàn)與x軸有1個(gè)交點(diǎn)。

  Δ=b’2—4ac<0時(shí),拋物線(xiàn)與x軸沒(méi)有交點(diǎn)。X的取值是虛數(x=—b±√b’2—4ac的值的相反數,乘上虛數i,整個(gè)式子除以2a)

  V、二次函數與一元二次方程

  特別地,二次函數(以下稱(chēng)函數)y=ax’2+bx+c,

  當y=0時(shí),二次函數為關(guān)于x的一元二次方程(以下稱(chēng)方程),

  即ax’2+bx+c=0

  此時(shí),函數圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數根。

  函數與x軸交點(diǎn)的橫坐標即為方程的根。

  數學(xué)必修一學(xué)習方法

  嚴防題海戰術(shù),克服盲目做題而不注重歸納的現象。

  做習題是為了鞏固知識、提高應變能力、思維能力、計算能力。學(xué)數學(xué)要做一定量的習題,但學(xué)數學(xué)并不等于做題,在各種考試題中,有相當的習題是靠簡(jiǎn)單的知識點(diǎn)的堆積,利用公理化知識體系的演繹而就能解決的,這些習題是要通過(guò)做一定量的習題達到對解題方法的展移而實(shí)現的,但,隨著(zhù)高考的改革,高考已把考查的重點(diǎn)放在創(chuàng )造型、能力型的考查上。因此要精做習題,注意知識的理解和靈活應用,當你做完一道習題后不訪(fǎng)自問(wèn):本題考查了什么知識點(diǎn)?什么方法?我們從中得到了解題的什么方法?這一類(lèi)習題中有什么解題的通性?實(shí)現問(wèn)題的完全解決我應用了怎樣的解題策略?只有這樣才會(huì )培養自己的悟性與創(chuàng )造性,開(kāi)發(fā)其創(chuàng )造力。也將在遇到即將來(lái)臨的期末考試和未來(lái)的高考題目中那些綜合性強的題目時(shí)可以有一個(gè)科學(xué)的方法解決它。

  數學(xué)必修一學(xué)習技巧

  1、做好準備,提出問(wèn)題,多次閱讀課本,查閱相關(guān)材料,回答自己提出的問(wèn)題,并在老師談?wù)撔抡n之前努力掌握盡可能多的知識。如果你不能回答問(wèn)題,你可以在老師的.講座中解答。

  2、學(xué)會(huì )聽(tīng)課。在初中教學(xué)中,教師經(jīng)常反復講解一個(gè)知識點(diǎn),讓學(xué)生通過(guò)大量的練習掌握它。但是高中畢業(yè)后,老師不會(huì )讓學(xué)生通過(guò)大量的練習掌握知識點(diǎn),而是通過(guò)一些相關(guān)的知識來(lái)引導學(xué)生去理解。這些知識是如何產(chǎn)生的,以及如何利用這些知識來(lái)解決一些相關(guān)的疑問(wèn)?如果學(xué)生能夠理解,他們可以通過(guò)課外練習鞏固自己的知識。同時(shí),學(xué)生可以根據教師的指導擴大知識。

  為自己在聽(tīng)課的過(guò)程中,當然,不能理解的知識,可以用來(lái)分析舉手讓老師解釋?zhuān)彩瓜嚓P(guān)記錄,課后進(jìn)一步理解;在預覽他們的問(wèn)題,如果老師不解決,可以利用業(yè)余時(shí)間去問(wèn)老師來(lái)解決,這樣的學(xué)習可以學(xué)習更多的知識。

  聽(tīng)每一分鐘,特別是老師講課的開(kāi)頭和結尾

  在老師講課開(kāi)始時(shí),他通常會(huì )總結上一節課的要點(diǎn),并指出這節課的內容。它是把舊知識和新知識聯(lián)系起來(lái)的一個(gè)環(huán)節,它的結尾往往是對一門(mén)課所提供的知識的總結,這是非常普遍的。是基于對這部分知識的理解而提出的提綱的方法。

數學(xué)必修一函數知識點(diǎn)2

  1、函數的奇偶性

 。1)若f(x)是偶函數,那么f(x)=f(—x);

 。2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用于求參數);

 。3)判斷函數奇偶性可用定義的等價(jià)形式:f(x)±f(—x)=0或(f(x)≠0);

 。4)若所給函數的解析式較為復雜,應先化簡(jiǎn),再判斷其奇偶性;

 。5)奇函數在對稱(chēng)的單調區間內有相同的單調性;偶函數在對稱(chēng)的單調區間內有相反的單調性;

  2、復合函數的有關(guān)問(wèn)題

 。1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數的問(wèn)題一定要注意定義域優(yōu)先的原則。

 。2)復合函數的單調性由“同增異減”判定;

  3、函數圖像(或方程曲線(xiàn)的對稱(chēng)性)

 。1)證明函數圖像的對稱(chēng)性,即證明圖像上任意點(diǎn)關(guān)于對稱(chēng)中心(對稱(chēng)軸)的對稱(chēng)點(diǎn)仍在圖像上;

 。2)證明圖像C1與C2的對稱(chēng)性,即證明C1上任意點(diǎn)關(guān)于對稱(chēng)中心(對稱(chēng)軸)的對稱(chēng)點(diǎn)仍在C2上,反之亦然;

 。3)曲線(xiàn)C1:f(x,y)=0,關(guān)于y=x+a(y=—x+a)的對稱(chēng)曲線(xiàn)C2的方程為f(y—a,x+a)=0(或f(—y+a,—x+a)=0);

 。4)曲線(xiàn)C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對稱(chēng)曲線(xiàn)C2方程為:f(2a—x,2b—y)=0;

 。5)若函數y=f(x)對x∈R時(shí),f(a+x)=f(a—x)恒成立,則y=f(x)圖像關(guān)于直線(xiàn)x=a對稱(chēng);

 。6)函數y=f(x—a)與y=f(b—x)的圖像關(guān)于直線(xiàn)x=對稱(chēng);

  4、函數的周期性

 。1)y=f(x)對x∈R時(shí),f(x +a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數;

 。2)若y=f(x)是偶函數,其圖像又關(guān)于直線(xiàn)x=a對稱(chēng),則f(x)是周期為2︱a︱的周期函數;

 。3)若y=f(x)奇函數,其圖像又關(guān)于直線(xiàn)x=a對稱(chēng),則f(x)是周期為4︱a︱的周期函數;

 。4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對稱(chēng),則f(x)是周期為2的周期函數;

 。5)y=f(x)的圖象關(guān)于直線(xiàn)x=a,x=b(a≠b)對稱(chēng),則函數y=f(x)是周期為2的周期函數;

 。6)y=f(x)對x∈R時(shí),f(x+a)=—f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數;

  5、方程k=f(x)有解k∈D(D為f(x)的值域);

  6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

  7、(1)(a>0,a≠1,b>0,n∈R+);(2)l og a N=(a>0,a≠1,b>0,b≠1);

 。3)l og a b的符號由口訣“同正異負”記憶;(4)a log a N= N(a>0,a≠1,N>0);

  8、判斷對應是否為映射時(shí),抓住兩點(diǎn):(1)A中元素必須都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9、能熟練地用定義證明函數的單調性,求反函數,判斷函數的'奇偶性。

  10、對于反函數,應掌握以下一些結論:(1)定義域上的單調函數必有反函數;(2)奇函數的反函數也是奇函數;(3)定義域為非單元素集的偶函數不存在反函數;(4)周期函數不存在反函數;(5)互為反函數的兩個(gè)函數具有相同的單調性;(5)y=f(x)與y=f—1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A)。

  11、處理二次函數的問(wèn)題勿忘數形結合;二次函數在閉區間上必有最值,求最值問(wèn)題用“兩看法”:一看開(kāi)口方向;二看對稱(chēng)軸與所給區間的相對位置關(guān)系;

  12、依據單調性,利用一次函數在區間上的保號性可解決求一類(lèi)參數的范圍問(wèn)題

  13、恒成立問(wèn)題的處理方法:(1)分離參數法;(2)轉化為一元二次方程的根的分布列不等式(組)求解;

數學(xué)必修一函數知識點(diǎn)3

  集合的含義與表示

  1、集合的含義:集合為一些確定的、不同的東西的全體,人們能意識到這些東西,并且能判斷一個(gè)給定的東西是否屬于這個(gè)整體。

  把研究對象統稱(chēng)為元素,把一些元素組成的總體叫集合,簡(jiǎn)稱(chēng)為集。

  2、集合的中元素的三個(gè)特性:

 。1)元素的確定性:集合確定,則一元素是否屬于這個(gè)集合是確定的:屬于或不屬于。

 。2)元素的互異性:一個(gè)給定集合中的元素是的,不可重復的。

 。3)元素的無(wú)序性:集合中元素的位置是可以改變的,并且改變位置不影響集合

  3、集合的表示:{…}

 。1)用大寫(xiě)字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

 。2)集合的表示方法:列舉法與描述法。

  a、列舉法:將集合中的元素一一列舉出來(lái){a,b,c……}

  b、描述法:

 、賲^間法:將集合中元素的.公共屬性描述出來(lái),寫(xiě)在大括號內表示集合。

  {x?R|x—3>2},{x|x—3>2}

 、谡Z(yǔ)言描述法:例:{不是直角三角形的三角形}

 、踁enn圖:畫(huà)出一條封閉的曲線(xiàn),曲線(xiàn)里面表示集合。

  4、集合的分類(lèi):

 。1)有限集:含有有限個(gè)元素的集合

 。2)無(wú)限集:含有無(wú)限個(gè)元素的集合

 。3)空集:不含任何元素的集合

  5、元素與集合的關(guān)系:

 。1)元素在集合里,則元素屬于集合,即:a?A

 。2)元素不在集合里,則元素不屬于集合,即:a¢A

  注意:常用數集及其記法:

  非負整數集(即自然數集)記作:N

  正整數集N—或N+

  整數集Z

  有理數集Q

  實(shí)數集R

  6、集合間的基本關(guān)系

 。1)“包含”關(guān)系(1)—子集

  定義:如果集合A的任何一個(gè)元素都是集合B的元素,我們說(shuō)這兩個(gè)集合有包含關(guān)系,稱(chēng)集合A是集合B的子集。

【數學(xué)必修一函數知識點(diǎn)】相關(guān)文章:

函數知識點(diǎn)03-01

[精選]函數知識點(diǎn)03-01

地理必修一知識點(diǎn)12-19

化學(xué)必修一知識點(diǎn)03-03

函數知識點(diǎn)(合集)03-02

高一化學(xué)必修一知識點(diǎn)歸納12-18

高一語(yǔ)文必修二知識點(diǎn)02-27

高一語(yǔ)文必修三知識點(diǎn)02-28

高一化學(xué)必修一知識點(diǎn)有哪些12-19