高中數學(xué)說(shuō)課稿匯總8篇
作為一名無(wú)私奉獻的老師,通常會(huì )被要求編寫(xiě)說(shuō)課稿,借助說(shuō)課稿我們可以快速提升自己的教學(xué)能力。那么寫(xiě)說(shuō)課稿需要注意哪些問(wèn)題呢?以下是小編收集整理的高中數學(xué)說(shuō)課稿8篇,歡迎大家借鑒與參考,希望對大家有所幫助。
高中數學(xué)說(shuō)課稿 篇1
各位老師:
大家好!
我叫xxx,來(lái)自xx。我說(shuō)課的題目是《用樣本的數字特征估計總體的數字特征》,內容選自于高中教材新課程人教A版必修3第二章第二節,課時(shí)安排為三個(gè)課時(shí),本節課內容為第一課時(shí)。下面我將從教材分析、教學(xué)目標分析、教學(xué)方法與手段分析、教學(xué)過(guò)程分析四大方面來(lái)闡述我對這節課的分析和設計:
一、教材分析
1、教材所處的地位和作用
在上一節我們已經(jīng)學(xué)習了用圖、表來(lái)組織樣本數據,并且學(xué)習了如何通過(guò)圖、表所提供的信息,用樣本的頻率分布估計總體的分布情況。本節課是在前面所學(xué)內容的基礎上,進(jìn)一步學(xué)習如何通過(guò)樣本的情況來(lái)估計總體,從而使我們能從整體上更好地把握總體的規律,為現實(shí)問(wèn)題的解決提供更多的幫助。
2教學(xué)的重點(diǎn)和難點(diǎn)
重點(diǎn):⑴能利用頻率頒布直方圖估計總體的眾數,中位數,平均數。
、企w會(huì )樣本數字特征具有隨機性
難點(diǎn):能應用相關(guān)知識解決簡(jiǎn)單的實(shí)際問(wèn)題。
二、教學(xué)目標分析
1、知識與技能目標
。1)能利用頻率頒布直方圖估計總體的眾數,中位數,平均數。
。2)能用樣本的眾數,中位數,平均數估計總體的眾數,中位數,平均數,并結合實(shí)際,對問(wèn)題作出合理判斷,制定解決問(wèn)題的有效方法。
2、過(guò)程與方法目標:
通過(guò)對本節課知識的學(xué)習,初步體會(huì )、領(lǐng)悟"用數據說(shuō)話(huà)"的統計思想方法。
3、情感態(tài)度與價(jià)值觀(guān)目標:
通過(guò)對有關(guān)數據的搜集、整理、分析、判斷培養學(xué)生"實(shí)事求是"的科學(xué)態(tài)度和嚴謹的工作作風(fēng)。
三、教學(xué)方法與手段分析
1、教學(xué)方法:結合本節課的教學(xué)內容和學(xué)生的認知水平,在教法上,我采用"問(wèn)答探究"式的教學(xué)方法,層層深入。充分發(fā)揮教師的主導作用,讓學(xué)生真正成為教學(xué)活動(dòng)的主體。
2、教學(xué)手段:通過(guò)多媒體輔助教學(xué),充分調動(dòng)學(xué)生參與課堂教學(xué)的主動(dòng)性與積極性。
四、教學(xué)過(guò)程分析
1、復習回顧,問(wèn)題引入
「屏幕顯示」
〈問(wèn)題1〉在日常生活中,我們往往并不需要了解總體的分布形態(tài),而是更關(guān)心總體的某一數字特征,例如:買(mǎi)燈泡時(shí),我們希望知道燈泡的平均使用壽命,我們怎樣了解燈泡的的使用壽命呢?當然不能把所有燈泡一一測試,因為測試后燈泡則報廢了。于是,需要通過(guò)隨機抽樣,把這批燈泡的壽命看作總體,從中隨機取出若干個(gè)個(gè)體作為樣本,算出樣本的數字特征,用樣本的數字特征來(lái)估計總體的數字特征。
提出問(wèn)題:什么是平均數,眾數,中位數?
。ń處熖釂(wèn),鋪墊復習,學(xué)生思考、積極回答。根據學(xué)生回答,給出補充總結,借助用多媒體分別給出他們的定義)
「設計意圖」使學(xué)生對本節課的學(xué)習做好知識準備。
。ㄟM(jìn)一步提出實(shí)例、導入新課。)
「屏幕顯示」
〈問(wèn)題2〉選擇薪水高的職業(yè)是人之常情,假如你大學(xué)畢業(yè)有兩個(gè)工作相當的單位可供選擇,現各從甲乙兩單位分別隨機抽取了50名員工的月工資資料如下(單位:元)
分組計算這兩組50名員工的月工資平均數,眾數,中位數并估計這兩個(gè)公司員工的平均工資。你選擇哪一個(gè)公司,并說(shuō)明你的理由。
。▽W(xué)生分組分別求兩組數據的平均工資。
學(xué)生:甲、乙平均工資分別為:甲:1320元,乙:1530元。
所以我選乙公司。
學(xué)生乙:甲、乙兩公司的眾數分別為甲:1200,乙:1000,所以我選擇甲公司。
學(xué)生丙:我要根據我的能力選擇。)
「設計意圖」學(xué)生按"常理"做出選擇,教師指出只憑平均工資做出判斷的依據并不可靠,從而引導學(xué)生進(jìn)一步深入問(wèn)題。
2講授新課,深入認識
、拧钙聊伙@示」
例如,在上一節抽樣調查的100位居民的月均用水量的數據中,我們畫(huà)出了這組數據的頻率分布直方圖,F在,觀(guān)察這組數據的頻率分布直方圖,能否得出這組數據的眾數、中位數和平均數?
。ò褜W(xué)生分成若干小組,分別計算平均數、中位數、眾數,或估計平均數、中位數、眾數。然后比較結果,會(huì )發(fā)現通過(guò)計算的結果和通過(guò)估計的結果出現了一定的誤差。引導學(xué)生分析產(chǎn)生誤差的'原因。原因是由于樣本數據的頻率分布直方圖把原始的一些數據給遺失了。讓學(xué)生明白產(chǎn)生這樣的誤差對總體的估計沒(méi)有大的影響,因為樣本本身也有隨機性。)
「設計意圖」讓學(xué)生懂得如何根據頻率分布直方圖估計樣本的平均數、中位數和眾數。使學(xué)生明白從直方圖中估計樣本的數字特征雖然會(huì )有一些誤差,但直觀(guān)、快速、可避免繁瑣的計算和閱讀數據的過(guò)程。
、啤刺岢鰡(wèn)題〉根據樣本的眾數、中位數、平均數估計總體平均數的基本數據,并對上一節的探究問(wèn)題制定一個(gè)合理平價(jià)用水量的的標準。
。◣熒ㄟ^(guò)共同交流探討得知僅以平均數或只使用中位數或眾數制定出平價(jià)用水標準都是不合理的,必須綜合考慮才能做出合理的選擇)
「設計意圖」使學(xué)生會(huì )依據眾數、中位數、平均數對數據進(jìn)行綜合判斷,并做出合理選擇。也為接下來(lái)對他們優(yōu)缺點(diǎn)的總結打下基礎。
、强偨Y出眾數、中位數、平均數三種數字特征的優(yōu)缺點(diǎn)。
。ㄏ扔蓪W(xué)生思考,然后再老師的引導下做出總結)
「設計意圖」使學(xué)生能更準確更全面地依據樣本的眾數、中位數、平均數對數據進(jìn)行綜合判斷,并做出合理選擇,使實(shí)際問(wèn)題得到正確的解決。
3、反思小結、培養能力
、賹W(xué)習利用頻率直方圖估計總體的眾數、中位數和平均數的方法。
、诮榻B眾數、中位數和平均數這三個(gè)特征數的優(yōu)點(diǎn)和缺點(diǎn)。
、蹖W(xué)習如何利用眾數、中位數和平均數的特征去分析解決實(shí)際問(wèn)題。
「設計意圖」小節是一堂課的概括和總結,有利于優(yōu)化學(xué)生的認知結構,把課堂教學(xué)傳授的知識較快轉化為學(xué)生的素質(zhì),也更進(jìn)一步培養學(xué)生的歸納概括能力
4、課后作業(yè),自主學(xué)習
課本練習
[設計意圖]課后作業(yè)的布置是為了檢驗學(xué)生對本節課內容的理解和運用程度,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內容。
5、板書(shū)設計
高中數學(xué)說(shuō)課稿 篇2
高三第一階段復習,也稱(chēng)“知識篇”。在這一階段,學(xué)生重溫高一、高二所學(xué)課程,全面復習鞏固各個(gè)知識點(diǎn),熟練掌握基本方法和技能;然后站在全局的高度,對學(xué)過(guò)的知識產(chǎn)生全新認識。在高一、高二時(shí),是以知識點(diǎn)為主線(xiàn)索,依次傳授講解的,由于后面的相關(guān)知識還沒(méi)有學(xué)到,不能進(jìn)行縱向聯(lián)系,所以,學(xué)的知識往往是零碎和散亂,而在第一輪復習時(shí),以章節為單位,將那些零碎的、散亂的知識點(diǎn)串聯(lián)起來(lái),并將他們系統化、綜合化,把各個(gè)知識點(diǎn)融會(huì )貫通。對于普通高中的學(xué)生,第一輪復習更為重要,我們希望能做高考試題中一些基礎題目,必須側重基礎,加強復習的針對性,講求實(shí)效。
一、內容分析說(shuō)明
1、本小節內容是初中學(xué)習的多項式乘法的繼續,它所研究的二項式的乘方的展開(kāi)式,與數學(xué)的其他部分有密切的聯(lián)系:
。1)二項展開(kāi)式與多項式乘法有聯(lián)系,本小節復習可對多項式的變形起到復習深化作用。
。2)二項式定理與概率理論中的二項分布有內在聯(lián)系,利用二項式定理可得到一些組合數的恒等式,因此,本小節復習可加深知識間縱橫聯(lián)系,形成知識網(wǎng)絡(luò )。
。3)二項式定理是解決某些整除性、近似計算等問(wèn)題的一種方法。
2、高考中二項式定理的試題幾乎年年有,多數試題的難度與課本習題相當,是容易題和中等難度的
試題,考察的題型穩定,通常以選擇題或填空題出現,有時(shí)也與應用題結合在一起求某些數、式的
近似值。
二、學(xué)校情況與學(xué)生分析
。1)我校是一所鎮普通高中,學(xué)生的基礎不好,記憶力較差,反應速度慢,普遍感到數學(xué)難學(xué)。但大部分學(xué)生想考大學(xué),主觀(guān)上有學(xué)好數學(xué)的愿望。
。2)授課班是政治、地理班,學(xué)生聽(tīng)課積極性不高,聽(tīng)課率低(60﹪),注意力不能持久,不能連續從事某項數學(xué)活動(dòng)。課堂上喜歡輕松詼諧的氣氛,大部分能機械的模仿,部分學(xué)生好記筆記。
三、教學(xué)目標
復習課二項式定理計劃安排兩個(gè)課時(shí),本課是第一課時(shí),主要復習二項展開(kāi)式和通項。根據歷年高考對這部分的考查情況,結合學(xué)生的特點(diǎn),設定如下教學(xué)目標:
1、知識目標:(1)理解并掌握二項式定理,從項數、指數、系數、通項幾個(gè)特征熟記它的展開(kāi)式。
。2)會(huì )運用展開(kāi)式的通項公式求展開(kāi)式的特定項。
2、能力目標:(1)教給學(xué)生怎樣記憶數學(xué)公式,如何提高記憶的持久性和準確性,從而優(yōu)化記憶品質(zhì)。記憶力是一般數學(xué)能力,是其它能力的基礎。
。2)樹(shù)立由一般到特殊的解決問(wèn)題的意識,了解解決問(wèn)題時(shí)運用的數學(xué)思想方法。
3、情感目標:通過(guò)對二項式定理的復習,使學(xué)生感覺(jué)到能掌握數學(xué)的部分內容,樹(shù)立學(xué)好數學(xué)的信心。有意識地讓學(xué)生演練一些歷年高考試題,使學(xué)生體驗到成功,在明年的高考中,他們也能得分。
四、教學(xué)過(guò)程
1、知識歸納
。1)創(chuàng )設情景:①同學(xué)們,還記得嗎? 、 、 展開(kāi)式是什么?
、趯W(xué)生一起回憶、老師板書(shū)。
設計意圖:①提出比較容易的問(wèn)題,吸引學(xué)生的注意力,組織教學(xué)。
、跒閷W(xué)生能回憶起二項式定理作鋪墊:激活記憶,引起聯(lián)想。
。2)二項式定理:①設問(wèn) 展開(kāi)式是什么?待學(xué)生思考后,老師板書(shū)
= C an+C an-1b1+…+C an-rbr+…+C bn(n∈N*)
、诶蠋熞髮W(xué)生說(shuō)出二項展開(kāi)式的特征并熟記公式:共有 項;各項里a的指數從n起依次減小1,直到0為止;b的指數從0起依次增加1,直到n為止。每一項里a、b的指數和均為n。
、垤柟叹毩 填空
設計意圖:①教給學(xué)生記憶的方法,比較分析公式的特點(diǎn),記規律。
、谧冇霉,熟悉公式。
。3) 展開(kāi)式中各項的系數C , C , C ,… , 稱(chēng)為二項式系數.
展開(kāi)式的通項公式Tr+1=C an-rbr , 其中r= 0,1,2,…n表示展開(kāi)式中第r+1項.
2、例題講解
例1求 的展開(kāi)式的第4項的二項式系數,并求的第4項的系數。
講解過(guò)程
設問(wèn):這里 ,要求的第4項的有關(guān)系數,如何解決?
學(xué)生思考計算,回答問(wèn)題;
老師指明①當項數是4時(shí), ,此時(shí) ,所以第4項的二項式系數是 ,
、诘4項的系數與的第4項的二項式系數區別。
板書(shū)
解:展開(kāi)式的第4項
所以第4項的系數為 ,二項式系數為 。
選題意圖:①利用通項公式求項的系數和二項式系數;②復習指數冪運算。
例2 求 的展開(kāi)式中不含的 項。
講解過(guò)程
設問(wèn):①不含的 項是什么樣的項?即這一項具有什么性質(zhì)?
、趩(wèn)題轉化為第幾項是常數項,誰(shuí)能看出哪一項是常數項?
師生討論 “看不出哪一項是常數項,怎么辦?”
共同探討思路:利用通項公式,列出項數的方程,求出項數。
老師總結思路:先設第 項為不含 的項,得 ,利用這一項的指數是零,得到關(guān)于 的方程,解出 后,代回通項公式,便可得到常數項。
板書(shū)
解:設展開(kāi)式的第 項為不含 項,那么
令 ,解得 ,所以展開(kāi)式的第9項是不含的 項。
因此 。
選題意圖:①鞏固運用展開(kāi)式的通項公式求展開(kāi)式的特定項,形成基本技能。
、谂袛嗟趲醉検浅淀椷\用方程的思想;找到這一項的項數后,實(shí)現了轉化,體現轉化的數學(xué)思想。
例3求 的展開(kāi)式中, 的系數。
解題思路:原式局部展開(kāi)后,利用加法原理,可得到展開(kāi)式中的 系數。
板書(shū)
解:由于 ,則 的展開(kāi)式中 的系數為 的展開(kāi)式中 的系數之和。
而 的展開(kāi)式含 的項分別是第5項、第4項和第3項,則 的展開(kāi)式中 的系數分別是: 。
所以 的展開(kāi)式中 的系數為
例4 如果在( + )n的展開(kāi)式中,前三項系數成等差數列,求展開(kāi)式中的有理項.
解:展開(kāi)式中前三項的系數分別為1, , ,
由題意得2× =1+ ,得n=8.
設第r+1項為有理項,T =C · ·x ,則r是4的'倍數,所以r=0,4,8.
有理項為T(mén)1=x4,T5= x,T9= .
3、課堂練習
1.(20xx年江蘇,7)(2x+ )4的展開(kāi)式中x3的系數是
A.6B.12 C.24 D.48
解析:(2x+ )4=x2(1+2 )4,在(1+2 )4中,x的系數為C ·22=24.
答案:C
2.(20xx年全國Ⅰ,5)(2x3- )7的展開(kāi)式中常數項是
A.14 B.14 C.42 D.-42
解析:設(2x3- )7的展開(kāi)式中的第r+1項是T =C (2x3) (- )r=C 2 ·
。ǎ1)r·x ,
當- +3(7-r)=0,即r=6時(shí),它為常數項,∴C (-1)6·21=14.
答案:A
3.(20xx年湖北,文14)已知(x +x )n的展開(kāi)式中各項系數的和是128,則展開(kāi)式中x5的系數是_____________.(以數字作答)
解析:∵(x +x )n的展開(kāi)式中各項系數和為128,
∴令x=1,即得所有項系數和為2n=128.
∴n=7.設該二項展開(kāi)式中的r+1項為T(mén) =C (x ) ·(x )r=C ·x ,
令 =5即r=3時(shí),x5項的系數為C =35.
答案:35
五、課堂教學(xué)設計說(shuō)明
1、這是一堂復習課,通過(guò)對例題的研究、討論,鞏固二項式定理通項公式,加深對項的系數、項的二項式系數等有關(guān)概念的理解和認識,形成求二項式展開(kāi)式某些指定項的基本技能,同時(shí),要培養學(xué)生的運算能力,邏輯思維能力,強化方程的思想和轉化的思想。
2、在例題的選配上,我設計了一定梯度。第一層次是給出二項式,求指定的項,即項數已知,只需直接代入通項公式即可(例1);第二層次(例2)則需要自己創(chuàng )造代入的條件,先判斷哪一項為所求,即先求項數,利用通項公式中指數的關(guān)系求出,此后轉化為第一層次的問(wèn)題。第三層次突出數學(xué)思想的滲透,例3需要變形才能求某一項的系數,恒等變形是實(shí)現轉化的手段。在求每個(gè)局部展開(kāi)式的某項系數時(shí),又有分類(lèi)討論思想的指導。而例4的設計是想增加題目的綜合性,求的n過(guò)程中,運用等差數列、組合數n等知識,求出后,有化歸為前面的問(wèn)題。
六、個(gè)人見(jiàn)解
高中數學(xué)說(shuō)課稿 篇3
我說(shuō)課的內容是高中數學(xué)第二冊(上冊)第七章《直線(xiàn)和圓的方程》中的第六節“曲線(xiàn)和方程”的第一課時(shí),下面我的說(shuō)課將從以下幾個(gè)方面進(jìn)行闡述:
一、教材分析
教材的地位和作用
“曲線(xiàn)和方程”這節教材揭示了幾何中的形與代數中的數相統一的關(guān)系,為“作形判數”與“就數論形”的相互轉化開(kāi)辟了途徑,這正體現了解析幾何這門(mén)課的基本思想,對全部解析幾何教學(xué)有著(zhù)深遠的影響。學(xué)生只有透徹理解了曲線(xiàn)和方程的意義,才算是尋得了解析幾何學(xué)習的入門(mén)之徑。如果以為學(xué)生不真正領(lǐng)悟曲線(xiàn)和方程的關(guān)系,照樣能求出方程、照樣能計算某些難題,因而可以忽視這個(gè)基本概念的教學(xué),這不能不說(shuō)是一種“舍本逐題”的偏見(jiàn),應該認識到這節“曲線(xiàn)和方程”的開(kāi)頭課是解析幾何教學(xué)的“重頭戲”!
根據以上分析,確立教學(xué)重點(diǎn)是:“曲線(xiàn)的方程”與“方程的曲線(xiàn)”的概念;難點(diǎn)是:怎樣利用定義驗證曲線(xiàn)是方程的曲線(xiàn),方程是曲線(xiàn)的方程。
二、教學(xué)目標
根據教學(xué)大綱的要求以及本教材的地位和作用,結合高二學(xué)生的認知特點(diǎn)確定教學(xué)目標如下:
知識目標:
1、了解曲線(xiàn)上的點(diǎn)與方程的解之間的一一對應關(guān)系;
2、初步領(lǐng)會(huì )“曲線(xiàn)的方程”與“方程的曲線(xiàn)”的概念;
3、學(xué)會(huì )根據已有的情景資料找規律,進(jìn)而分析、判斷、歸納結論;
4、強化“形”與“數”一致并相互轉化的思想方法。
能力目標:
1、通過(guò)直線(xiàn)方程的引入,加強學(xué)生對方程的解和曲線(xiàn)上的點(diǎn)的一一對應關(guān)系的認識;
2、在形成曲線(xiàn)和方程的`概念的教學(xué)中,學(xué)生經(jīng)歷觀(guān)察、分析、討論等數學(xué)活動(dòng)過(guò)程,探索出結論,并能有條理的闡述自己的觀(guān)點(diǎn);
3、能用所學(xué)知識理解新的概念,并能運用概念解決實(shí)際問(wèn)題,從中體會(huì )轉化化歸的思想方法,提高思維品質(zhì),發(fā)展應用意識。
情感目標:
1、通過(guò)概念的引入,讓學(xué)生感受從特殊到一般的認知規律;
2、通過(guò)反例辨析和問(wèn)題解決,培養合作交流、獨立思考等良好的個(gè)性品質(zhì),以及勇于批判、敢于創(chuàng )新的科學(xué)精神。
三、重難點(diǎn)突破
“曲線(xiàn)的方程”與“方程的曲線(xiàn)”的概念是本節的重點(diǎn),這是由于本節課是由直觀(guān)表象上升到抽象概念的過(guò)程,學(xué)生容易對定義中為什么要規定兩個(gè)關(guān)系產(chǎn)生困惑,原因是不理解兩者缺一都將擴大概念的外延。由于學(xué)生已經(jīng)具備了用方程表示直線(xiàn)、拋物線(xiàn)等實(shí)際模型,積累了感性認識的基礎,所以可用舉反例的方法來(lái)解決困惑,通過(guò)反例揭示“兩者缺一”與直覺(jué)的矛盾,從而又促使學(xué)生對概念表述的嚴密性進(jìn)行探索,自然地得出定義。為了強化其認識,又決定用集合相等的概念來(lái)解釋曲線(xiàn)和方程的對應關(guān)系,并以此為工具來(lái)分析實(shí)例,這將有助于學(xué)生的理解,有助于學(xué)生通其法,知其理。
怎樣利用定義驗證曲線(xiàn)是方程的曲線(xiàn),方程是曲線(xiàn)的方程是本節的難點(diǎn)。因為學(xué)生在作業(yè)中容易犯想當然的錯誤,通常在由已知曲線(xiàn)建立方程的時(shí)候,不驗證方程的解為坐標的點(diǎn)在曲線(xiàn)上,就斷然得出所求的是曲線(xiàn)方程。這種現象在高考中也屢見(jiàn)不鮮。為了突破難點(diǎn),本節課設計了三種層次的問(wèn)題,幻燈片9是概念的直接運用,幻燈片10是概念的逆向運用,幻燈片11是證明曲線(xiàn)的方程。通過(guò)這些例題讓學(xué)生再一次體會(huì )“二者”缺一不可。
四、學(xué)情分析
此前,學(xué)生已知,在建立了直角坐標系后平面內的點(diǎn)和有序實(shí)數對之間建立了一一對應關(guān)系,已有了用方程(有時(shí)以函數式的形式出現)表示曲線(xiàn)的感性認識(特別是二元一次方程表示直線(xiàn)),現在要進(jìn)一步研究平面內的曲線(xiàn)和含有兩個(gè)變數的方程之間的關(guān)系,是由直觀(guān)表象上升到抽象概念的過(guò)程,對學(xué)生有相當大的難度。學(xué)生在學(xué)習時(shí)容易產(chǎn)生的問(wèn)題是,不理解“曲線(xiàn)上的點(diǎn)的坐標都是方程的解”和“以這個(gè)方程的解為坐標的點(diǎn)都是曲線(xiàn)上的點(diǎn)”這兩句話(huà)在揭示“曲線(xiàn)和方程”關(guān)系時(shí)各自所起的作用。本節課的教學(xué)目標也只能是初步領(lǐng)會(huì ),要求學(xué)生能答出曲線(xiàn)和方程間必須滿(mǎn)足兩個(gè)關(guān)系時(shí)才能稱(chēng)作“曲線(xiàn)的方程”和“方程的曲線(xiàn)”,兩者缺一不可,并能借助實(shí)例指出兩個(gè)關(guān)系的區別。
高中數學(xué)說(shuō)課稿 篇4
1、教學(xué)目標:
一、借助單位圓理解任意角的三角函數的定義。
二、根據三角函數的定義,能夠判斷三角函數值的符號。
三、通過(guò)學(xué)生積極參與知識的"發(fā)現"與"形成"的過(guò)程,培養合情猜測的能力,從中感悟數學(xué)概念的嚴謹性與科學(xué)性。
四、讓學(xué)生在任意角三角函數概念的形成過(guò)程中,體會(huì )函數思想,體會(huì )數形結合思想。
2、教學(xué)重點(diǎn)與難點(diǎn):
重點(diǎn):任意角的正弦、余弦、正切的定義;三角函數值的符號。
難點(diǎn):任意角的三角函數概念的建構過(guò)程。
授課過(guò)程:
一、引入
在我們的現實(shí)世界中的許多運動(dòng)變化都有循環(huán)往復、周而復始的現象,這種變化規律稱(chēng)為周期性。如何用數學(xué)的方法來(lái)刻畫(huà)這種變化?從這節課開(kāi)始,我們要來(lái)學(xué)習刻畫(huà)這種規律的數學(xué)模型之一――三角函數。
二、創(chuàng )設情境
三角函數是與角有關(guān)的函數,在學(xué)習任意角概念時(shí),我們知道在直角坐標系中研究角,可以給學(xué)習帶來(lái)許多方便,比如我們可以根據角終邊的位置把它們進(jìn)行歸類(lèi),現在大家考慮:若在直角坐標系中來(lái)研究銳角,則銳角三角函數又可怎樣定義呢?
學(xué)生情況估計:學(xué)生可能會(huì )提出兩種定義的方式,一種定義為邊之比,另一種定義在比值中引入了終邊上的'一點(diǎn)P的坐標。
問(wèn)題:
1、銳角三角函數能否表示成第二種比值方式?
2、點(diǎn)P能否取在終邊上的其它位置?為什么?
3、點(diǎn)P在哪個(gè)位置,比值會(huì )更簡(jiǎn)潔?(引出單位圓的定義)。指出sina=mP的函數依舊表示一個(gè)比值,不過(guò)其分母為1而已。
練習:計算的各三角函數值。
三、任意角的三角函數的定義
角的概念已經(jīng)推廣道了任意角,那么三角函數的定義在任意角的范圍里改怎么定義呢?
嘗試:根據銳角三角函數的定義,你能?chē)L試著(zhù)給出任意角三角函數的定義嗎?
評價(jià)學(xué)生給出的定義。給出任意角三角函數的定義。
四、解析任意角三角函數的定義
三角函數首先是函數。你能從函數觀(guān)點(diǎn)解析三角函數嗎?(定義域)
對于確定的角a,上面三個(gè)函數值都是唯一確定的,所以,正弦、余弦、正切都是以角為自變量,以單位圓上點(diǎn)的坐標或坐標的比值為函數值的函數,我們將它們統稱(chēng)為三角函數。由于角的集合和實(shí)數集之間可以建立一一對應的關(guān)系,三角函數可以看成是自變量為實(shí)數的函數。
五、三角函數的應用。
1、已知角,求a的三角函數值。
2、已知角a終邊上的一點(diǎn)P(-3,-4),求各三角函數值。
以上兩道書(shū)上的例題,讓學(xué)生自習看書(shū),學(xué)生看書(shū)的同時(shí),老師提出問(wèn)題:
1、已知角如何求三角函數值?
2、利用角a的終邊上任意一點(diǎn)的坐標也可以定義三角函數,你能給出這種定義嗎?(這種定義與課本中給出的定義各有什么特點(diǎn)?)
3、變式:已知角a終邊上點(diǎn)P(-3b,-4b),(b0),求角a的各三角函數值。
4、探究:三角函數的值在各象限的符號。
六、小結及作業(yè)
教案設計說(shuō)明:
新教材的教學(xué)理念之一是讓學(xué)生去體驗新知識的發(fā)生過(guò)程,這節《任意角三角函數》的教案,主要圍繞這一點(diǎn)來(lái)設計。
首先,角的概念推廣了,那么銳角三角函數的定義是否也該推廣到任意角的三角函數的定義呢?通過(guò)這個(gè)問(wèn)題,讓學(xué)生體會(huì )到新知識的發(fā)生是可能的,自然的。
其次,到底應該怎樣去合理定義任意角的三角函數呢?讓學(xué)生提出自己的想法,同時(shí)讓學(xué)生去辨證這個(gè)想法是否是科學(xué)的?因為一個(gè)概念是嚴謹的,科學(xué)的,不能隨心所欲地編造,必須去論證它的合理性,至少這種概念不能和銳角三角函數的定義有所沖突。在這個(gè)立-破的過(guò)程中,讓學(xué)生去體驗一個(gè)新的數學(xué)概念可能是如何形成,在形成的過(guò)程中可以從哪些角度加以科學(xué)的辯思。這樣也有助于學(xué)生對任意角三角函數概念的理解。
再次,讓學(xué)生充分體會(huì )在任意角三角函數定義的推廣中,是如何將直角三角形這個(gè)"形"的問(wèn)題,轉換到直角坐標系下點(diǎn)的坐標這個(gè)"數"的過(guò)程的。培養數形結合的思想。
高中數學(xué)說(shuō)課稿 篇5
各位評委老師,大家好!
我是本科數學(xué)**號選手,今天我要進(jìn)行說(shuō)課的課題是高中數學(xué)必修一第一章第三節第一課時(shí)《函數單調性與最大(。┲怠。我將從教材分析;教學(xué)目標分析;教法、學(xué)法;教學(xué)過(guò)程;教學(xué)評價(jià)五個(gè)方面來(lái)陳述我對本節課的設計方案。懇請在座的專(zhuān)家評委批評指正。
一、教材分析
1、教材的地位和作用
。1)本節課主要對函數單調性的學(xué)習;
。2)它是在學(xué)習函數概念的基礎上進(jìn)行學(xué)習的,同時(shí)又為基本初等函數的學(xué)習奠定了基礎,所以他在教材中起著(zhù)承前啟后的重要作用;(可以看看這一課題的前后章節來(lái)寫(xiě))
。3)它是歷年高考的熱點(diǎn)、難點(diǎn)問(wèn)題
2、教材重、難點(diǎn)
重點(diǎn):函數單調性的定義
難點(diǎn):函數單調性的證明
重難點(diǎn)突破:在學(xué)生已有知識的基礎上,通過(guò)認真觀(guān)察思考,并通過(guò)小組合作探究的辦法來(lái)實(shí)現重難點(diǎn)突破。(這個(gè)必須要有)
二、教學(xué)目標
知識目標:
。1)函數單調性的定義
。2)函數單調性的.證明
能力目標:培養學(xué)生全面分析、抽象和概括的能力,以及了解由簡(jiǎn)單到復雜,由特殊到一般的化歸思想
情感目標:培養學(xué)生勇于探索的精神和善于合作的意識
三、教法學(xué)法分析
1、教法分析
“教必有法而教無(wú)定法”,只有方法得當才會(huì )有效。新課程標準之處教師是教學(xué)的組織者、引導者、合作者,在教學(xué)過(guò)程要充分調動(dòng)學(xué)生的積極性、主動(dòng)性。本著(zhù)這一原則,在教學(xué)過(guò)程中我主要采用以下教學(xué)方法:開(kāi)放式探究法、啟發(fā)式引導法、小組合作討論法、反饋式評價(jià)法
2、學(xué)法分析
“授人以魚(yú),不如授人以漁”,最有價(jià)值的知識是關(guān)于方法的只是。學(xué)生作為教學(xué)活動(dòng)的主題,在學(xué)習過(guò)程中的參與狀態(tài)和參與度是影響教學(xué)效果最重要的因素。在學(xué)法選擇上,我主要采用:自主探究法、觀(guān)察發(fā)現法、合作交流法、歸納總結法。
四、教學(xué)過(guò)程
1、以舊引新,導入新知
通過(guò)課前小研究讓學(xué)生自行繪制出一次函數f(x)=x和二次函數f(x)=x^2的圖像,并觀(guān)察函數圖象的特點(diǎn),總結歸納。通過(guò)課上小組討論歸納,引導學(xué)生發(fā)現,教師總結:一次函數f(x)=x的圖像在定義域是直線(xiàn)上升的,而二次函數f(x)=x^2的圖像是一個(gè)曲線(xiàn),在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當添加手勢,這樣看起來(lái)更自然)
2、創(chuàng )設問(wèn)題,探索新知
緊接著(zhù)提出問(wèn)題,你能用二次函數f(x)=x^2表達式來(lái)描述函數在(-∞,0)的圖像?教師總結,并板書(shū),揭示函數單調性的定義,并注意強調可以利用作差法來(lái)判斷這個(gè)函數的單調性。
讓學(xué)生模仿剛才的表述法來(lái)描述二次函數f(x)=x^2在(0,+∞)的圖像,并找個(gè)別同學(xué)起來(lái)作答,規范學(xué)生的數學(xué)用語(yǔ)。
讓學(xué)生自主學(xué)習函數單調區間的定義,為接下來(lái)例題學(xué)習打好基礎。
3、例題講解,學(xué)以致用
例1主要是對函數單調區間的鞏固運用,通過(guò)觀(guān)察函數定義在(—5,5)的圖像來(lái)找出函數的單調區間。這一例題主要以學(xué)生個(gè)別回答為主,學(xué)生回答之后通過(guò)互評來(lái)糾正答案,檢查學(xué)生對函數單調區間的掌握。強調單調區間一般寫(xiě)成半開(kāi)半閉的形式
例題講解之后可讓學(xué)生自行完成課后練習4,以學(xué)生集體回答的方式檢驗學(xué)生的學(xué)習效果。
例2是將函數單調性運用到其他領(lǐng)域,通過(guò)函數單調性來(lái)證明物理學(xué)的波意爾定理。這是歷年高考的熱點(diǎn)跟難點(diǎn)問(wèn)題,這一例題要采用教師板演的方式,來(lái)對例題進(jìn)行證明,以規范總結證明步驟。一設二差三化簡(jiǎn)四比較,注意要把f(x1)-f(x2)化簡(jiǎn)成和差積商的形式,再比較與0的大小。
學(xué)生在熟悉證明步驟之后,做課后練習3,并以小組為單位找部分同學(xué)上臺板演,其他同學(xué)在下面自行完成,并通過(guò)自評、互評檢查證明步驟。
4、歸納小結
本節課我們主要學(xué)習了函數單調性的定義及證明過(guò)程,并在教學(xué)過(guò)程中注重培養學(xué)生勇于探索的精神和善于合作的意識。
5、作業(yè)布置
為了讓學(xué)生學(xué)習不同的數學(xué),我將采用分層布置作業(yè)的方式:一組 習題1、3A組1、2、3 ,二組 習題1、3A組2、3、B組1、2
6、板書(shū)設計
我力求簡(jiǎn)潔明了地概括本節課的學(xué)習要點(diǎn),讓學(xué)生一目了然。
五、教學(xué)評價(jià)
本節課是在學(xué)生已有知識的基礎上學(xué)習的,在教學(xué)過(guò)程中通過(guò)自主探究、合作交流,充分調動(dòng)學(xué)生的積極性跟主動(dòng)性,及時(shí)吸收反饋信息,并通過(guò)學(xué)生的自評、互評,讓內部動(dòng)機和外界刺激協(xié)調作用,促進(jìn)其數學(xué)素養不斷提高。
以上就是我對本節課的設計,謝謝!
高中數學(xué)說(shuō)課稿 篇6
一、教學(xué)目標
。ㄒ唬┲R與技能
1、進(jìn)一步熟練掌握求動(dòng)點(diǎn)軌跡方程的基本方法。
2、體會(huì )數學(xué)實(shí)驗的直觀(guān)性、有效性,提高幾何畫(huà)板的操作能力。
。ǘ┻^(guò)程與方法
1、培養學(xué)生觀(guān)察能力、抽象概括能力及創(chuàng )新能力。
2、體會(huì )感性到理性、形象到抽象的思維過(guò)程。
3、強化類(lèi)比、聯(lián)想的方法,領(lǐng)會(huì )方程、數形結合等思想。
。ㄈ┣楦袘B(tài)度價(jià)值觀(guān)
1、感受動(dòng)點(diǎn)軌跡的.動(dòng)態(tài)美、和諧美、對稱(chēng)美。
2、樹(shù)立競爭意識與合作精神,感受合作交流帶來(lái)的成功感,樹(shù)立自信心,激發(fā)提出問(wèn)題和解決問(wèn)題的勇氣。
二、教學(xué)重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn):運用類(lèi)比、聯(lián)想的方法探究不同條件下的軌跡。
教學(xué)難點(diǎn):圖形、文字、符號三種語(yǔ)言之間的過(guò)渡。
三、、教學(xué)方法和手段
教學(xué)方法:觀(guān)察發(fā)現、啟發(fā)引導、合作探究相結合的教學(xué)方法。啟發(fā)引導學(xué)生積極思考并對學(xué)生的思維進(jìn)行調控,幫助學(xué)生優(yōu)化思維過(guò)程,在此基礎上,提供給學(xué)生交流的機會(huì ),幫助學(xué)生對自己的思維進(jìn)行組織和澄清,并能清楚地、準確地表達自己的數學(xué)思維。
教學(xué)手段:利用網(wǎng)絡(luò )教室,四人一機,多媒體教學(xué)手段。通過(guò)上述教學(xué)手段,一方面:再現知識產(chǎn)生的過(guò)程,通過(guò)多媒體動(dòng)態(tài)演示,突破學(xué)生在舊知和新知形成過(guò)程中的障礙(靜態(tài)到動(dòng)態(tài));另一方面:節省了時(shí)間,提高了課堂教學(xué)的效率,激發(fā)了學(xué)生學(xué)習的興趣。
教學(xué)模式:重點(diǎn)中學(xué)實(shí)施素質(zhì)教育的課堂模式“創(chuàng )設情境、激發(fā)情感、主動(dòng)發(fā)現、主動(dòng)發(fā)展”。
四、教學(xué)過(guò)程
1、創(chuàng )設情景,引入課題
生活中我們四處可見(jiàn)軌跡曲線(xiàn)的影子。
演示:這是美麗的城市夜景圖。
演示:許多人認為天體運行的軌跡都是圓錐曲線(xiàn),研究表明,天體數目越多,軌跡種類(lèi)也越多。
演示建筑中也有許多美麗的軌跡曲線(xiàn)。
設計意圖:讓學(xué)生感受數學(xué)就在我們身邊,感受軌跡,曲線(xiàn)的動(dòng)態(tài)美、和諧美、對稱(chēng)美,激發(fā)學(xué)習興趣。
2、激發(fā)情感,引導探索
靠在墻角的梯子滑落了,如果梯子上站著(zhù)一個(gè)人,我們不禁會(huì )想,這個(gè)人是直直的摔下去呢?還是劃了一條優(yōu)美的曲線(xiàn)飛出去呢?我們把這個(gè)問(wèn)題轉化為數學(xué)問(wèn)題就是新教材高二上冊88頁(yè)20題,也就是這里的例題1。
高中數學(xué)說(shuō)課稿 篇7
一、教學(xué)背景分析
1、教材結構分析
《圓的方程》安排在高中數學(xué)第二冊(上)第七章第六節。圓作為常見(jiàn)的簡(jiǎn)單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著(zhù)廣泛的應用。圓的方程屬于解析幾何學(xué)的基礎知識,是研究二次曲線(xiàn)的開(kāi)始,對后續直線(xiàn)與圓的位置關(guān)系、圓錐曲線(xiàn)等內容的學(xué)習,無(wú)論在知識上還是方法上都有著(zhù)積極的意義,所以本節內容在整個(gè)解析幾何中起著(zhù)承前啟后的作用。
2、學(xué)情分析
圓的方程是學(xué)生在初中學(xué)習了圓的概念和基本性質(zhì)后,又掌握了求曲線(xiàn)方程的一般方法的基礎上進(jìn)行研究的。但由于學(xué)生學(xué)習解析幾何的時(shí)間還不長(cháng)、學(xué)習程度較淺,且對坐標法的運用還不夠熟練,在學(xué)習過(guò)程中難免會(huì )出現困難。另外學(xué)生在探究問(wèn)題的能力,合作交流的意識等方面有待加強。
根據上述教材結構與內容分析,考慮到學(xué)生已有的認知結構和心理特征,我制定如下教學(xué)目標:
3、教學(xué)目標
(1) 知識目標:①掌握圓的標準方程;
、跁(huì )由圓的標準方程寫(xiě)出圓的半徑和圓心坐標,能根據條件寫(xiě)出圓的標準方程;
、劾脠A的標準方程解決簡(jiǎn)單的實(shí)際問(wèn)題。
(2) 能力目標:①進(jìn)一步培養學(xué)生用代數方法研究幾何問(wèn)題的能力;
、诩由顚敌谓Y合思想的理解和加強對待定系數法的運用;
、墼鰪妼W(xué)生用數學(xué)的意識。
(3) 情感目標:①培養學(xué)生主動(dòng)探究知識、合作交流的意識;
、谠隗w驗數學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習興趣。
根據以上對教材、教學(xué)目標及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):
4、教學(xué)重點(diǎn)與難點(diǎn)
(1)重點(diǎn):圓的標準方程的求法及其應用。
(2)難點(diǎn): ①會(huì )根據不同的已知條件求圓的標準方程;
、谶x擇恰當的坐標系解決與圓有關(guān)的實(shí)際問(wèn)題。
為使學(xué)生能達到本節設定的教學(xué)目標,我再從教法和學(xué)法上進(jìn)行分析:
二、教法學(xué)法分析
1、教法分析 為了充分調動(dòng)學(xué)生學(xué)習的積極性,本節課采用“啟發(fā)式”問(wèn)題教學(xué)法,用環(huán)環(huán)相扣的問(wèn)題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區上。另外我恰當的利用多媒體課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng )設實(shí)際問(wèn)題的情境既能激發(fā)學(xué)生的學(xué)習興趣,又直觀(guān)的引導了學(xué)生建模的過(guò)程。
2、學(xué)法分析 通過(guò)推導圓的標準方程,加深對用坐標法求軌跡方程的理解。通過(guò)求圓的標準方程,理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓。通過(guò)應用圓的標準方程,熟悉用待定系數法求的過(guò)程。
下面我就對具體的教學(xué)過(guò)程和設計加以說(shuō)明:
三、教學(xué)過(guò)程與設計
整個(gè)教學(xué)過(guò)程是由七個(gè)問(wèn)題組成的問(wèn)題鏈驅動(dòng)的,共分為五個(gè)環(huán)節:
創(chuàng )設情境 啟迪思維 深入探究 獲得新知 應用舉例 鞏固提高
反饋訓練 形成方法 小結反思 拓展引申
下面我從縱橫兩方面敘述我的教學(xué)程序與設計意圖。
首先:縱向敘述教學(xué)過(guò)程
(一)創(chuàng )設情境——啟迪思維
問(wèn)題一 已知隧道的截面是半徑為4m的半圓,車(chē)輛只能在道路中心線(xiàn)一側行駛,一輛寬為2。7m,高為3m的貨車(chē)能不能駛入這個(gè)隧道?
通過(guò)對這個(gè)實(shí)際問(wèn)題的探究,把學(xué)生的思維由用勾股定理求線(xiàn)段CD的長(cháng)度轉移為用曲線(xiàn)的方程來(lái)解決。一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車(chē)不能通過(guò)的結論的同時(shí)學(xué)生自己推導出了圓心在原點(diǎn),半徑為4的圓的標準方程,從而很自然的進(jìn)入了本課的主題。用實(shí)際問(wèn)題創(chuàng )設問(wèn)題情境,讓學(xué)生感受到問(wèn)題來(lái)源于實(shí)際,應用于實(shí)際,激發(fā)了學(xué)生的學(xué)習興趣和學(xué)習欲望。這樣獲取的知識,不但易于保持,而且易于遷移。
通過(guò)對問(wèn)題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標法研究圓的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節。
(二)深入探究——獲得新知
問(wèn)題二 1、根據問(wèn)題一的.探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?
2、如果圓心在,半徑為時(shí)又如何呢?
這一環(huán)節我首先讓學(xué)生對問(wèn)題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標準方程后,引導學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標準方程。然后再讓學(xué)生對圓心不在原點(diǎn)的情況進(jìn)行探究。我預設了三種方法等待著(zhù)學(xué)生的探究結果,分別是:坐標法、圖形變換法、向量平移法。
得到圓的標準方程后,我設計了由淺入深的三個(gè)應用平臺,進(jìn)入第三環(huán)節。
(三)應用舉例——鞏固提高
I、直接應用 內化新知
問(wèn)題三 1、寫(xiě)出下列各圓的標準方程:
(1)圓心在原點(diǎn),半徑為3;
(2)經(jīng)過(guò)點(diǎn),圓心在點(diǎn)。
2、寫(xiě)出圓的圓心坐標和半徑。
我設計了兩個(gè)小問(wèn)題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡(jiǎn)單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標、半徑與圓的標準方程之間的關(guān)系,為后面探究圓的切線(xiàn)問(wèn)題作準備。
II、靈活應用 提升能力
問(wèn)題四 1、求以點(diǎn)為圓心,并且和直線(xiàn)相切的圓的方程。
2、求過(guò)點(diǎn),圓心在直線(xiàn)上且與軸相切的圓的方程。
3、已知圓的方程為,求過(guò)圓上一點(diǎn)的切線(xiàn)方程。
你能歸納出具有一般性的結論嗎?
已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是什么?
我設計了三個(gè)小問(wèn)題,第一個(gè)小題有了剛剛解決問(wèn)題三的基礎,學(xué)生會(huì )很快求出半徑,根據圓心坐標寫(xiě)出圓的標準方程。第二個(gè)小題有些困難,需要引導學(xué)生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓。第三個(gè)小題解決方法較多,我預設了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng )設了空間。最后我讓學(xué)生由第三小題的結論進(jìn)行歸納、猜想,在論證經(jīng)過(guò)圓上一點(diǎn)圓的切線(xiàn)方程的過(guò)程中,又一次模擬了真理發(fā)現的過(guò)程,使探究氣氛達到高潮。
III、實(shí)際應用 回歸自然
問(wèn)題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長(cháng)度(精確到0。01m)。
我選用了教材的例3,它是待定系數法求出圓的三個(gè)參數的又一次應用,同時(shí)也與引例相呼應,使學(xué)生形成解決實(shí)際問(wèn)題的一般方法,培養了學(xué)生建模的習慣和用數學(xué)的意識。
(四)反饋訓練——形成方法
問(wèn)題六 1、求過(guò)原點(diǎn)和點(diǎn),且圓心在直線(xiàn)上的圓的標準方程。
2、求圓過(guò)點(diǎn)的切線(xiàn)方程。
3、求圓過(guò)點(diǎn)的切線(xiàn)方程。
接下來(lái)是第四環(huán)節——反饋訓練。這一環(huán)節中,我設計三個(gè)小題作為鞏固性訓練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習數學(xué)的樂(lè )趣,成功的喜悅,找到自信,增強學(xué)習數學(xué)的愿望與信心。另外第3題是我特意安排的一道求過(guò)圓外一點(diǎn)的圓的切線(xiàn)方程,由于學(xué)生剛剛歸納了過(guò)圓上一點(diǎn)圓的切線(xiàn)方程,因此很容易產(chǎn)生思維的負遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導學(xué)生用數形結合的思想,結合初中已有的圓的知識進(jìn)行判斷,這樣的設計對培養學(xué)生思維的嚴謹性具有良好的效果。
(五)小結反思——拓展引申
1、課堂小結
把圓的標準方程與過(guò)圓上一點(diǎn)圓的切線(xiàn)方程加以小結,提煉數形結合的思想和待定系數的方法
、賵A心為,半徑為r 的圓的標準方程為:
圓心在原點(diǎn)時(shí),半徑為r 的圓的標準方程為:。
、谝阎獔A的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是:。
2、分層作業(yè)
(A)鞏固型作業(yè):教材P81-82:(習題7。6)1,2,4。(B)思維拓展型作業(yè):試推導過(guò)圓上一點(diǎn)的切線(xiàn)方程。
3、激發(fā)新疑
問(wèn)題七 1、把圓的標準方程展開(kāi)后是什么形式?
2、方程表示什么圖形?
在本課的結尾設計這兩個(gè)問(wèn)題,作為對這節課內容的鞏固與延伸,讓學(xué)生體會(huì )知識的起點(diǎn)與終點(diǎn)都蘊涵著(zhù)問(wèn)題,舊的問(wèn)題解決了,新的問(wèn)題又產(chǎn)生了。在知識的拓展中再次掀起學(xué)生探究的熱情。另外它為下節課研究圓的一般方程作了重要的準備。
以上是我縱向的教學(xué)過(guò)程及簡(jiǎn)單的設計意圖,接下來(lái),我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設計:
橫向闡述教學(xué)設計
(一)突出重點(diǎn) 抓住關(guān)鍵 突破難點(diǎn)
求圓的標準方程既是本節課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設了由淺入深的學(xué)習環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標準方程之間的關(guān)系,逐步理解三個(gè)參數的重要性,自然形成待定系數法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn)。
第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應用問(wèn)題,這是學(xué)生固有的難題,主要是因為應用問(wèn)題的題目冗長(cháng),學(xué)生很難根據問(wèn)題情境構建數學(xué)模型,缺乏解決實(shí)際問(wèn)題的信心,為此我首先用一道題目簡(jiǎn)潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導學(xué)生真正走入問(wèn)題的情境之中,并從中抽象出數學(xué)模型,從而消除畏難情緒,增強了信心。最后再形成應用圓的標準方程解決實(shí)際問(wèn)題的一般模式,并嘗試應用該模式分析和解決第二個(gè)應用問(wèn)題——問(wèn)題五。這樣的設計,使學(xué)生在解決問(wèn)題的同時(shí),形成了方法,難點(diǎn)自然突破。
(二)學(xué)生主體 教師主導 探究主線(xiàn)
本節課的設計用問(wèn)題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終。從圓的標準方程的推導到應用都是在問(wèn)題的指引、我的指導下,由學(xué)生探究完成的。另外,我重點(diǎn)設計了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題四的第三問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生設立充分的探究空間,學(xué)生在交流成果的過(guò)程中,既體驗了科學(xué)研究和真理發(fā)現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問(wèn)題的驅動(dòng)下,高效的完成本節的學(xué)習任務(wù)。
(三)培養思維 提升能力 激勵創(chuàng )新
為了培養學(xué)生的理性思維,我分別在問(wèn)題一和問(wèn)題四中,設計了兩次由特殊到一般的學(xué)習思路,培養學(xué)生的歸納概括能力。在問(wèn)題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養了學(xué)生的創(chuàng )新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行。
以上是我對這節課的教學(xué)預設,具體的教學(xué)過(guò)程還要根據學(xué)生在課堂中的具體情況適當調整,向生成性課堂進(jìn)行轉變。最后我以赫爾巴特的一句名言結束我的說(shuō)課,發(fā)揮我們的創(chuàng )造性,力爭“使教育過(guò)程成為一種藝術(shù)的事業(yè)”。
高中數學(xué)說(shuō)課稿 篇8
各位評委老師好:今天我說(shuō)課的題目是
是必修章第節的內容,我將以新課程標準的理念指導本節課的教學(xué),從教材分析,教法學(xué)法,教學(xué)過(guò)程,教學(xué)評價(jià)四個(gè)方面加以說(shuō)明。
一、 教材分析
是在學(xué)習了基礎上進(jìn)一步研究 并為后面學(xué)習 做準備,在整個(gè)
高中數學(xué)中起著(zhù)承上啟下的作用,因此本節內容十分重要。
根據新課標要求和學(xué)生實(shí)際水平我制定以下教學(xué)目標
1、 知識能力目標:使學(xué)生理解掌握
2、 過(guò)程方法目標:通過(guò)觀(guān)察歸納抽象概括使學(xué)生構建領(lǐng)悟 數學(xué)思想,培養 能力
3、 情感態(tài)度價(jià)值觀(guān)目標:通過(guò)學(xué)習體驗數學(xué)的科學(xué)價(jià)值和應用價(jià)值,培養善于
觀(guān)察勇于思考的學(xué)習習慣和嚴謹 的科學(xué)態(tài)度
根據教學(xué)目標、本節特點(diǎn)和學(xué)生實(shí)際情況本節重點(diǎn)是 ,由于學(xué)生對 缺少感性認識,所以本節課的重點(diǎn)是
二、教法學(xué)法
根據教師主導地位和學(xué)生主體地位相統一的規律,我采用引導發(fā)現法為本節課的主要教學(xué)方法并借助多媒體為輔助手段。在教師點(diǎn)撥下,學(xué)生自主探索、合作交流來(lái)尋求解決問(wèn)題的方法。
三、 教學(xué)過(guò)程
四、 教學(xué)程序及設想
1、由……引入:
把教學(xué)內容轉化為具有潛在意義的問(wèn)題,讓學(xué)生產(chǎn)生強烈的問(wèn)題意識,使學(xué)生的整個(gè)學(xué)習過(guò)程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過(guò)程。 在實(shí)際情況下進(jìn)行學(xué)習,可以使學(xué)生利用已有知識與經(jīng)驗,同化和索引出當前學(xué)習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問(wèn)題情境中。
對于本題:……
2、由實(shí)例得出本課新的知識點(diǎn)是:……
3、講解例題。
我們在講解例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對解題方法和規律進(jìn)行概括,有利于發(fā)展學(xué)生的思維能力。在題中:
4、能力訓練。
課后練習……
使學(xué)生能鞏固羨慕自覺(jué)運用所學(xué)知識與解題思想方法。
5、總結結論,強化認識。
知識性?xún)热莸男〗Y,可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì);數學(xué)思想方法的`小結,可使學(xué)生更深刻地理解數學(xué)思想方法在解題中的地位和應用,并且逐漸培養學(xué)生的良好的個(gè)性品質(zhì)目標。
6、變式延伸,進(jìn)行重構。
重視課本例題,適當對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián)、累積、加工,從而達到舉一反三的效果。
五、教學(xué)評價(jià)
學(xué)生學(xué)習的學(xué)習結果評價(jià)當然重要,但是更重要的是學(xué)生學(xué)習的過(guò)程評價(jià),教師應
當高度重視學(xué)生學(xué)習過(guò)程中的參與度、自信心、團隊精神合作意識數學(xué)能力的發(fā)現,以及學(xué)習的興趣和成就感。
【高中數學(xué)說(shuō)課稿】相關(guān)文章:
高中數學(xué)的說(shuō)課稿06-13
高中數學(xué)說(shuō)課稿06-12
高中數學(xué)說(shuō)課稿06-25
高中數學(xué)向量說(shuō)課稿07-08
高中數學(xué)經(jīng)典說(shuō)課稿范文07-25
高中數學(xué)說(shuō)課稿07-23
高中數學(xué)說(shuō)課稿10-03
高中數學(xué)免費說(shuō)課稿09-19