高中數學(xué)說(shuō)課稿實(shí)用[15篇]
作為一名為他人授業(yè)解惑的教育工作者,編寫(xiě)說(shuō)課稿是必不可少的,說(shuō)課稿有助于教學(xué)取得成功、提高教學(xué)質(zhì)量。那么寫(xiě)說(shuō)課稿需要注意哪些問(wèn)題呢?下面是小編為大家收集的高中數學(xué)說(shuō)課稿,歡迎大家分享。
高中數學(xué)說(shuō)課稿1
尊敬的各位考官:
大家好,我是今天的X號考生,今天我說(shuō)課的題目是《直線(xiàn)的點(diǎn)斜式方程》。
新課標指出:高中教育屬于基礎教育,具有基礎性。且具有多樣性與選擇性,使不同的學(xué)生在數學(xué)上得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過(guò)程等幾個(gè)方面展開(kāi)我的說(shuō)課。
一、說(shuō)教材
首先,我來(lái)談?wù)勎覍滩牡睦斫狻?/p>
直線(xiàn)的兩點(diǎn)式方程是人教A版必修2第三章第二節的內容,本節課的內容是直線(xiàn)的點(diǎn)斜式方程的推導及其適用范圍。在此之前學(xué)生已經(jīng)學(xué)習了在平面直角坐標系內確定直線(xiàn)的幾何要素有:斜率和直線(xiàn)上任一點(diǎn)坐標。任意兩點(diǎn)也能確定直線(xiàn)。之前所學(xué)內容為本節課的探究做好基礎,同時(shí)本節課也為今后進(jìn)一步學(xué)習直線(xiàn)的兩點(diǎn)式方程以及解決數學(xué)中的相關(guān)問(wèn)題打下基礎。
二、說(shuō)學(xué)情
合理把握學(xué)情是上好一堂課的基礎,下面我來(lái)談?wù)剬W(xué)生的實(shí)際情況。
高中的學(xué)生掌握了一定的基礎知識,思維較敏捷,動(dòng)手能力較強,但理解能力、自主學(xué)習能力及空間想象力還不成熟,所以本節課從學(xué)生已有的知識經(jīng)驗出發(fā),引導學(xué)生發(fā)現問(wèn)題、解決問(wèn)題;并且學(xué)生的自尊心較強,所以對學(xué)生的評價(jià)注重先揚后抑,鼓勵學(xué)生多多發(fā)言,進(jìn)行正確引導。
三、說(shuō)教學(xué)目標
根據以上對教材的分析以及對學(xué)情的把握,我制定了如下三維教學(xué)目標:
(一)知識與技能
掌握直線(xiàn)方程的點(diǎn)斜式方程以及適用范圍,會(huì )用直線(xiàn)的點(diǎn)斜式方程解決問(wèn)題。
(二)過(guò)程與方法
通過(guò)直線(xiàn)點(diǎn)斜式方程的推導過(guò)程,提高分析、推理的能力,發(fā)展數形結合的數學(xué)思想。
(三)情感態(tài)度價(jià)值觀(guān)
通過(guò)本節的學(xué)習,體驗數學(xué)的嚴謹性,養成細心觀(guān)察、認真分析、嚴謹思考的良好思維習慣。
四、說(shuō)教學(xué)重難點(diǎn)
我認為一節好的數學(xué)課,從教學(xué)內容上說(shuō)一定要突出重點(diǎn)、突破難點(diǎn)。而教學(xué)重點(diǎn)的確立與我本節課的內容肯定是密不可分的。那么根據授課內容可以確定本節課的教學(xué)重點(diǎn)是:直線(xiàn)的點(diǎn)斜式方程。教學(xué)難點(diǎn)是:直線(xiàn)點(diǎn)斜式方程的適用范圍。
五、說(shuō)教法和學(xué)法
依據新課程改革精神與學(xué)生認知發(fā)展現狀,突破難點(diǎn)有效實(shí)現知識的鞏固,我將采用講授法、探究法、練習法、小組討論等教學(xué)方法,并在教學(xué)過(guò)程中有意識的培養學(xué)生的合作探究能力,自主探究能力,使之在真正意義上成為學(xué)會(huì )學(xué)習的人。
六、說(shuō)教學(xué)過(guò)程
在這節課的'教學(xué)過(guò)程中,我注重突出重點(diǎn),條理清晰,緊湊合理。各項活動(dòng)的安排也注重互動(dòng)、交流,最大限度的調動(dòng)學(xué)生參與課堂的積極性、主動(dòng)性。
(一)引入新課
首先引導學(xué)生回憶上節課學(xué)習的直線(xiàn)的點(diǎn)斜式方程的概念,以及如何利用點(diǎn)斜式方程求解直線(xiàn)方程。在學(xué)生充分回顧后,引出新的直線(xiàn)方程——直線(xiàn)的兩點(diǎn)式方程。
通過(guò)復習導入新課,能夠讓學(xué)生對于之前的知識進(jìn)行充分回顧,為本節課后面的學(xué)習奠定基礎。
(二)探索新知
接下來(lái)是新課講授環(huán)節,我將分為兩部分,分別為點(diǎn)斜式方程的推導和點(diǎn)斜方程的適用范圍。
高中數學(xué)說(shuō)課稿2
一、教材分析
教材的地位和作用:本節課教學(xué)內容是高一(下)第四章4.6節第一課時(shí)(兩角和與差的余弦)。本節內容是三角恒等變形的基礎,是正弦線(xiàn)、余弦線(xiàn)和誘導公式等知識的延伸,同時(shí),它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內容,對于三角變換、三角恒等式的證明和三角函數式的化簡(jiǎn)、求值等三角問(wèn)題的解決有著(zhù)重要的支撐作用。本課時(shí)主要講授平面內兩點(diǎn)間距離公式、兩角和與差的余弦公式以及它們的簡(jiǎn)單應用。這節內容在高考中不但是熱點(diǎn),而且一般都是中、低檔題,是一定要拿到分的題。
教學(xué)重點(diǎn):兩角和與差的余弦公式的推導與運用。
教學(xué)難點(diǎn):余弦和角公式的推導以及應用,學(xué)會(huì )恰當代換、逆用公式等技能。
二、教學(xué)目標
。ㄒ唬┲R目標:
1、掌握利用平面內兩點(diǎn)間的距離公式進(jìn)行C(α+β)公式的推導;
2、能用代換法推導C(α-β)公式;
3、初步學(xué)會(huì )公式的簡(jiǎn)單應用和逆用公式等基本技能。
。ǘ┠芰δ繕耍
1、通過(guò)公式的推導,在培養學(xué)生三大能力的基礎上,著(zhù)重培養學(xué)生獲得數學(xué)知識的能力和數學(xué)交流的能力;
2、通過(guò)公式的靈活運用,培養學(xué)生的轉化思想和變換能力。
。ㄈ┣楦心繕耍
1、通過(guò)觀(guān)察、對比體會(huì )公式的線(xiàn)形美,對稱(chēng)美
2、通過(guò)教師啟發(fā)引導,培養學(xué)生不怕困難,勇于探索勇于創(chuàng )新的求知精神。
三、學(xué)情分析:
根據現在的學(xué)生知識遷移能力差、計算能力差的特點(diǎn),第一節課不要太多公式應用。
四、教法分析
1、創(chuàng )設情境----提出問(wèn)題----探索嘗試----啟發(fā)引導----解決問(wèn)題。
引導學(xué)生建立一直角坐標系xOy,同時(shí)在這一坐標系內作單位圓O,并作出角,使角的始邊為Ox,交圓O于點(diǎn),終邊交圓O于點(diǎn);角的始邊為O,終邊交圓O于,角的始邊為O,終邊交圓O于點(diǎn),并引導學(xué)生用的三角函數標出點(diǎn)的坐標。并充分利用單位圓、平面內兩點(diǎn)的距離公式,使學(xué)生弄懂由距離等式化得的三角恒等式,并整理成為余弦的和角公式,從而克服本課的難點(diǎn)。
2、教具:多媒體投影系統。(多媒體系統可以有效增加課堂容量,色彩的強烈對比可以突出對比效果;動(dòng)畫(huà)的應用可以將抽象的問(wèn)題直觀(guān)化,體現直觀(guān)性原則。)
五、學(xué)法指導
1、能靈活求寫(xiě)角的終邊與單位圓的交點(diǎn)坐標,并結合平面幾何知識推證出公式。
2、本節的中心公式是,然后對作不同的特值代換可得其他公式,故靈活適當的代換是學(xué)好本節內容的基礎。
3、讓學(xué)生注意觀(guān)察、對比兩角和與差的余弦公式中正弦、余弦的順序;角的順序關(guān)系,培養學(xué)生的觀(guān)察能力,并通過(guò)觀(guān)察體會(huì )公式的對稱(chēng)美。
在教學(xué)過(guò)程中,啟動(dòng)學(xué)生自主性學(xué)習,自得知識,自覓規律,自悟原理,主動(dòng)發(fā)展思維和能力。
六、教學(xué)過(guò)程
。ㄒ唬┬抡n引入,產(chǎn)生對公式的需求。
1、學(xué)生先討論“ =cos(450+300)=cos450+cos300是否成立?”。(學(xué)生可能通過(guò)計算器、量余弦線(xiàn)的長(cháng)度、特殊角三角函數值和余弦函數的值域三種途徑解決問(wèn)題)。得出cos(450+300)≠cos450 +cos300。進(jìn)而得出cos(α+β)≠cosα+cosβ這個(gè)結論。那么此時(shí)又是多少,75°,15°雖然不是特殊角,但有某種特殊性,即可以表示成特殊角的和與差。那么能不能由特殊角的三角函數值來(lái)表示這種和角與差角的三角函數值?
2、如果特殊角可以,對一般的兩個(gè)角,當它的三角函數值已知時(shí),能否求出和與差的三角函數值?即能否用單角的三角函數來(lái)表示復角的三角函數呢?提出cos(α+β)又等于什么呢?寫(xiě)出標題。
。ǘ╊A備知識
在解決上面的問(wèn)題之前,我們先來(lái)作一點(diǎn)準備,解決“平面內兩點(diǎn)間距離的公式”這一問(wèn)題。
。1)回憶初中學(xué)習過(guò)的數軸上的兩點(diǎn)間的距離公式
。2)通過(guò)上面的復習,我們已經(jīng)熟悉了數軸上兩點(diǎn)間距離公式。那么,平面內兩點(diǎn)間距離與這兩點(diǎn)的坐標有什么樣的關(guān)系呢?(通過(guò)課件演示讓學(xué)生體會(huì )平面內兩點(diǎn)間距離和同一坐標軸上兩點(diǎn)間距離的關(guān)系)
平面內兩點(diǎn)間距離公式推導分析:設P1(x1,y1),P2(x2,y2)由勾股定理聯(lián)想從P1、P2分別作X、Y軸的垂線(xiàn),則有:M1(x1,0),M2(x2,0),N1(0,y1),N2(0,y2)。通過(guò)演示課件P1Q= M1M2=│x2-x1│ QP2= N1N2=│y2-y1│根據勾股定理寫(xiě)出P1P22=P1Q2+QP22=(x2-x1)2+(y2-y1)2。由此得平面內P1(x1,y1)、P2(x2,y2)兩點(diǎn)間的距離公式:P1P2= (x2-x1)2+(y2-y1)2
習:P(3,-1),Q(-3,-9)求PQ(建議這部分不要花太多時(shí)間)
。3)、復習單位圓上點(diǎn)的坐標表示,為推導公式作鋪墊。
。ㄈ┕酵茖
我們要用α、β、α+β的三角函數來(lái)表示α+β的余弦,那么就得作出α、β、α+β的.角,構造α、β、α+β的角時(shí),聯(lián)想建坐標系、作單位圓。(1)分別指出點(diǎn)P1、P2、P3的坐標。(2)求出弦P1P3的長(cháng)。(3)思考構造弦P1P3的等量關(guān)系。當發(fā)現|P1P3|可以用cos(α+β)表示時(shí),想到應該尋找與P1P3相等的弦,從而才想到作出角(-β)。
在直角坐標系內做單位圓,并做出任意角α,α+β和-β。它們的終邊分別交單位圓于P2、P3和P4點(diǎn),單位圓與X軸交于P1。則:P1(1,0)、 P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、
1.根據“同圓中相等的圓心角所對的弦相等”得到距離等式
2.將轉化為三角恒等式,逐步變形整理成余弦的和角公式。
[cos(α+β)-1]2+sin2(α+β)=[cos(-β)-cosα]2+[sin(-β)-sinα]2展開(kāi),整理得2-2cos(α+β)=2-2cosαcosβ+2sinαsinβ
所以cos(α+β)=cosαcosβ-sinαsinβ.記作
注意:(1)公式的結構特征:左邊是兩角和的余弦,右邊是兩兩同名函數的積。
。2)公式的記憶口訣:哥哥撿傘傘(用音譯,讓學(xué)生覺(jué)得有趣并得以記住公式)
。3)公式的用途:用單角α、β的三角函數來(lái)表示復角的α+β余弦
。4)注意強調公式中α、β是任意角。因為α、β是任意角,且兩點(diǎn)間的距離公式具有一般性,所以此公式適用于任意角,具有一般性。以后可以用此公式導出其它公式,如用-β去代替β導出C(α-β) 。
。ㄋ模┕綉
正因為α、β的任意性,所以賦予C(α+β)公式的強大生命力。
提問(wèn):
1、請用特殊角分別代替公式中α、β,你會(huì )求出哪些非特殊角的值呢?
讓學(xué)生動(dòng)筆自由嘗試、主動(dòng)探索。同學(xué)會(huì )求cos15°、cos75°、cos105°等。
2、若β固定,分別用代替α,你將發(fā)現什么結論呢?
用C(α±β)公式得到證明:讓學(xué)生發(fā)現C(α±β)公式是誘導公式的推廣,誘導公式是C(α±β)公式的特殊情況。當其中一個(gè)角是的整數倍時(shí)用誘導公式較好。
由P1P3=P2P4(同圓相等的
圓心角所對弦相等)及兩點(diǎn)
間距離公式,得:
[cos(α+β)-1]2+[sin(α+β)-0]2
=[cos(-β)-cosα]2+[sin(-β)-sinα]2
展開(kāi)整理合并得:
cos(α+β)=cosα cosβ-sinαsinβ這就是兩角和的余弦公式。(其中α,β為任意角)將其中β?lián)Q成-β,公式仍成立:
cos(α+ β)=cosαcosβ -sinαsinβ
cos(α+(-β))= cosαcos(-β)-sinαsin(-β)
化簡(jiǎn)得兩角差的余弦公式:
cos(α-β)= cosαcosβ+sinαsinβ
求證:(1)cos(-α)= sinα
。2)sin(-α)= cosα
證明:
。1)cos(-α)=cos cosα+sin sinα
=sinα
。2)sin(-α)=cos[ -(-α)]
=cosα
證明(1)、(2)的結論即為誘導公式。
例1、利用和(差)角公式求750、150角的余弦。
分析:將750可以看成450+300而450和300均為特殊
角,借助它們即可求出750的余弦。(學(xué)生自己完成)
解:cos750 = cos(450+300)
= cos450cos300 -sin450sin300
= ×- ×
=cos150
= cos(450-300)
= cos450cos300+sin450sin300
高中數學(xué)說(shuō)課稿3
一、教材地位與作用
本節知識是必修五第一章《解三角形》的第一節內容,與初中學(xué)習的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,而且解三角形和三角函數聯(lián)系在高考當中也時(shí)?家恍┙獯痤}。因此,正弦定理的知識非常重要。
二、學(xué)情分析
作為高一學(xué)生,同學(xué)們已經(jīng)掌握了基本的三角函數,特別是在一些特殊三角形中,而學(xué)生們在解決任意三角形的邊與角問(wèn)題,就比較困難。
教學(xué)重點(diǎn):正弦定理的內容,正弦定理的證明及基本應用。
教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時(shí)判斷解的個(gè)數。
根據我的教學(xué)內容與學(xué)情分析以及教學(xué)重難點(diǎn),我制定了如下幾點(diǎn)教學(xué)目標
教學(xué)目標分析:
知識目標:理解并掌握正弦定理的證明,運用正弦定理解三角形。
能力目標:探索正弦定理的證明過(guò)程,用歸納法得出結論。
情感目標:通過(guò)推導得出正弦定理,讓學(xué)生感受數學(xué)公式的整潔對稱(chēng)美和數學(xué)的實(shí)際應用價(jià)值。
三、教法學(xué)法分析
教法:采用探究式課堂教學(xué)模式,在教師的啟發(fā)引導下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現”為基本探究?jì)热,以生活?shí)際為參照對象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。
學(xué)法:指導學(xué)生掌握“觀(guān)察——猜想——證明——應用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識應用于對任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習,觀(guān)察,類(lèi)比,思考,探究,動(dòng)手嘗試相結合,增強學(xué)生由特殊到一般的數學(xué)思維能力,鍥而不舍的求學(xué)精神。
四、教學(xué)過(guò)程
(一)創(chuàng )設情境,布疑激趣
“興趣是最好的老師”,如果一節課有個(gè)好的開(kāi)頭,那就意味著(zhù)成功了一半,本節課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(cháng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(cháng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習的興趣,從而進(jìn)入今天的學(xué)習課題。
(二)探尋特例,提出猜想
1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現正弦定理。
2.那結論對任意三角形都適用嗎?指導學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進(jìn)行驗證。
3.讓學(xué)生總結實(shí)驗結果,得出猜想:
在三角形中,角與所對的'邊滿(mǎn)足關(guān)系
這為下一步證明樹(shù)立信心,不斷的使學(xué)生對結論的認識從感性逐步上升到理性。
(三)邏輯推理,證明猜想
1.強調將猜想轉化為定理,需要嚴格的理論證明。
2.鼓勵學(xué)生通過(guò)作高轉化為熟悉的直角三角形進(jìn)行證明。
3.提示學(xué)生思考哪些知識能把長(cháng)度和三角函數聯(lián)系起來(lái),繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學(xué)思想。
4.思考是否還有其他的方法來(lái)證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來(lái)證明。
(四)歸納總結,簡(jiǎn)單應用
1.讓學(xué)生用文字敘述正弦定理,引導學(xué)生發(fā)現定理具有對稱(chēng)和諧美,提升對數學(xué)美的享受。
2.正弦定理的內容,討論可以解決哪幾類(lèi)有關(guān)三角形的問(wèn)題。
3.運用正弦定理求解本節課引入的三角形零件邊長(cháng)的問(wèn)題。自己參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀(guān)。
(五)講解例題,鞏固定理
1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。
例1簡(jiǎn)單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來(lái)解三角形。
2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。
例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。
(六)課堂練習,提高鞏固
1.在△ABC中,已知下列條件,解三角形。
(1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm
2.在△ABC中,已知下列條件,解三角形。
(1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°
學(xué)生板演,老師巡視,及時(shí)發(fā)現問(wèn)題,并解答。
(七)小結反思,提高認識
通過(guò)以上的研究過(guò)程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會(huì )?
1.用向量證明了正弦定
理,體現了數形結合的數學(xué)思想。
2.它表述了三角形的邊與對角的正弦值的關(guān)系。
3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類(lèi)討論的思想。
(從實(shí)際問(wèn)題出發(fā),通過(guò)猜想、實(shí)驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問(wèn)題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著(zhù)結論,而且整個(gè)探索過(guò)程我們也掌握了研究問(wèn)題的一般方法。在強調研究性學(xué)習方法,注重學(xué)生的主體地位,調動(dòng)學(xué)生積極性,使數學(xué)教學(xué)成為數學(xué)活動(dòng)的教學(xué)。)
(八)任務(wù)后延,自主探究
如果已知一個(gè)三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現正弦定理不適用了,那么自然過(guò)渡到下一節內容,余弦定理。布置作業(yè),預習下一節內容。
高中數學(xué)說(shuō)課稿4
一、說(shuō)教材
1.內容分析:本節課是“反比例函數”的第一節課,是繼正比例函數、一次函數之后,二次函數之前的又一類(lèi)型函數,本節課主要通過(guò)豐富的生活事例,讓學(xué)生歸納出反比例函數的概念,并進(jìn)一步體會(huì )函數是刻畫(huà)變量之間關(guān)系的數學(xué)模型,從中體會(huì )函數的模型思想。因此本節課重點(diǎn)是理解和領(lǐng)悟反比例函數的概念,所滲透的數學(xué)思想方法有:類(lèi)比,轉化,建模。
2.學(xué)情分析:對八年級學(xué)生來(lái)說(shuō),雖然他們已經(jīng)對函數,正比例函數,一次函數的概念、圖象、性質(zhì)以及應用有所掌握,但他們面對新的一次函數時(shí),還可能存在一些思維障礙,如學(xué)生不能準確地找出變量之間的自變量和因變量,以及如何從事例中領(lǐng)悟和總結出反比例函數的概念,因此,本節課的難點(diǎn)是理解和領(lǐng)悟反比例函數的概念。
二、說(shuō)教學(xué)目標
根據本人對《數學(xué)課程標準》的理解與分析,考慮學(xué)生已有的認知結構、心理特征,我把本課的目標定為:
1.從現實(shí)的情境和已有的知識經(jīng)驗出發(fā),討論兩個(gè)變量之間的相依關(guān)系,加深對函數概念的理解。
2.經(jīng)歷抽象反比例函數概念的過(guò)程,領(lǐng)會(huì )反比例函數的'意義,理解反比例函數的概念。
三、說(shuō)教法
本節課從知識結構呈現的角度看,為了實(shí)現教學(xué)目標,我建立了“創(chuàng )設情境→建立模型→解釋知識→應用知識”的學(xué)習模式,這種模式清晰地再現了知識的生成與發(fā)展的過(guò)程,也符合學(xué)生的認知規律。于是,從教學(xué)內容的性質(zhì)出發(fā),我設計了如下的課堂結構:創(chuàng )設出電流、行程等情境問(wèn)題讓學(xué)生發(fā)現新知,把上述問(wèn)題進(jìn)行類(lèi)比,導出概念,獲得新知,最后總結評價(jià)、內化新知。
四、說(shuō)學(xué)法
我認為學(xué)生將實(shí)際問(wèn)題轉化成函數的能力是有限的,所以我借助多媒體輔助教學(xué),指導學(xué)生通過(guò)類(lèi)比、轉化、直觀(guān)形象的觀(guān)察與演示,親身經(jīng)歷函數模型的轉化過(guò)程,為學(xué)生攻克難點(diǎn)創(chuàng )造條件,同時(shí)考慮到本課的重點(diǎn)是反比例函數概念的教學(xué),也考慮到概念教學(xué)要從大量實(shí)際出發(fā),通過(guò)事例幫助完成定義。
好學(xué)教育:
因此,我采用了“問(wèn)題式探究法”的教法,利用多媒體設置豐富的問(wèn)題情境,讓學(xué)生的思維由問(wèn)題開(kāi)始,到問(wèn)題深化,讓學(xué)生的思維始終處于積極主動(dòng)的狀態(tài),并隨著(zhù)問(wèn)題的深入而跳躍。
高中數學(xué)說(shuō)課稿5
各位老師:
大家好!
我叫***,來(lái)自**。我說(shuō)課的題目是《古典概型》,內容選自于高中教材新課程人教A版必修3第三章第二節,課時(shí)安排為兩個(gè)課時(shí),本節課內容為第一課時(shí)。下面我將從教材分析、教學(xué)目標分析、教法與學(xué)法分析、教學(xué)過(guò)程分析四大方面來(lái)闡述我對這節課的分析和設計:
一、教材分析
1.教材所處的地位和作用
古典概型是一種特殊的數學(xué)模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。它承接著(zhù)前面學(xué)過(guò)的隨機事件的概率及其性質(zhì),又是以后學(xué)習條件概率的基礎,起到承前啟后的作用。
2.教學(xué)的重點(diǎn)和難點(diǎn)
重點(diǎn):理解古典概型及其概率計算公式。
難點(diǎn):古典概型的判斷及把一些實(shí)際問(wèn)題轉化成古典概型。
二、教學(xué)目標分析
1.知識與技能目標
。1)通過(guò)試驗理解基本事件的概念和特點(diǎn)
。2)在數學(xué)建模的過(guò)程中,抽離出古典概型的兩個(gè)基本特征,推導出古典概型下的概率的計算公式。
2、過(guò)程與方法:
經(jīng)歷公式的推導過(guò)程,體驗由特殊到一般的數學(xué)思想方法。
3、情感態(tài)度與價(jià)值觀(guān):
。1)用具有現實(shí)意義的實(shí)例,激發(fā)學(xué)生的學(xué)習興趣,培養學(xué)生勇于探索,善于發(fā)現的創(chuàng )新思想。
。2)讓學(xué)生掌握"理論來(lái)源于實(shí)踐,并把理論應用于實(shí)踐"的辨證思想。
三、教法與學(xué)法分析
1、教法分析:根據本節課的特點(diǎn),采用引導發(fā)現和歸納概括相結合的教學(xué)方法,通過(guò)提出問(wèn)題、思考問(wèn)題、解決問(wèn)題等教學(xué)過(guò)程,觀(guān)察對比、概括歸納古典概型的概念及其概率公式,再通過(guò)具體問(wèn)題的提出和解決,來(lái)激發(fā)學(xué)生的學(xué)習興趣,調動(dòng)學(xué)生的主體能動(dòng)性,讓每一個(gè)學(xué)生充分地參與到學(xué)習活動(dòng)中來(lái)。
2、學(xué)法分析:學(xué)生在教師創(chuàng )設的問(wèn)題情景中,通過(guò)觀(guān)察、類(lèi)比、思考、探究、概括、歸納和動(dòng)手嘗試相結合,體現了學(xué)生的主體地位,培養了學(xué)生由具體到抽象,由特殊到一般的數學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度。
、鍎(chuàng )設情景、引入新課
在課前,教師布置任務(wù),以小組為單位,完成下面兩個(gè)模擬試驗:
試驗一:拋擲一枚質(zhì)地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數,要求每個(gè)數學(xué)小組至少完成20次(最好是整十數),最后由代表匯總;
試驗二:拋擲一枚質(zhì)地均勻的骰子,分別記錄"1點(diǎn)"、"2點(diǎn)"、"3點(diǎn)"、"4點(diǎn)"、"5點(diǎn)"和"6點(diǎn)"的次數,要求每個(gè)數學(xué)小組至少完成60次(最好是整十數),最后由代表匯總。
在課上,學(xué)生展示模擬試驗的操作方法和試驗結果,并與同學(xué)交流活動(dòng)感受,教師最后匯總方法、結果和感受,并提出兩個(gè)問(wèn)題。
1.用模擬試驗的方法來(lái)求某一隨機事件的概率好不好?為什么?
不好,要求出某一隨機事件的概率,需要進(jìn)行大量的試驗,并且求出來(lái)的結果是頻率,而不是概率。
2.根據以前的學(xué)習,上述兩個(gè)模擬試驗的每個(gè)結果之間都有什么特點(diǎn)?]
「設計意圖」通過(guò)課前的模擬實(shí)驗,讓學(xué)生感受與他人合作的重要性,培養學(xué)生運用數學(xué)語(yǔ)言的能力。隨著(zhù)新問(wèn)題的提出,激發(fā)了學(xué)生的求知欲望,通過(guò)觀(guān)察對比,培養了學(xué)生發(fā)現問(wèn)題的能力。
、嫠伎冀涣、形成概念
學(xué)生觀(guān)察對比得出兩個(gè)模擬試驗的相同點(diǎn)和不同點(diǎn),教師給出基本事件的概念,并對相關(guān)特點(diǎn)加以說(shuō)明,加深對新概念的理解。
[基本事件有如下的兩個(gè)特點(diǎn):
。1)任何兩個(gè)基本事件是互斥的;
。2)任何事件(除不可能事件)都可以表示成基本事件的和.]
「設計意圖」讓學(xué)生從問(wèn)題的相同點(diǎn)和不同點(diǎn)中找出研究對象的對立統一面,這能培養學(xué)生分析問(wèn)題的能力,同時(shí)也教會(huì )學(xué)生運用對立統一的辯證唯物主義觀(guān)點(diǎn)來(lái)分析問(wèn)題的一種方法。教師的注解可以使學(xué)生更好的把握問(wèn)題的關(guān)鍵。
例1從字母a、b、c、d中任意取出兩個(gè)不同字母的試驗中,有哪些基本事件?
先讓學(xué)生嘗試著(zhù)列出所有的基本事件,教師再講解用樹(shù)狀圖列舉問(wèn)題的優(yōu)點(diǎn)。
「設計意圖」將數形結合和分類(lèi)討論的思想滲透到具體問(wèn)題中來(lái)。由于沒(méi)有學(xué)習排列組合,因此用列舉法列舉基本事件的個(gè)數,不僅能讓學(xué)生直觀(guān)的感受到對象的總數,而且還能使學(xué)生在列舉的時(shí)候作到不重不漏。解決了求古典概型中基本事件總數這一難點(diǎn)
觀(guān)察對比,發(fā)現兩個(gè)模擬試驗和例1的共同特點(diǎn):
讓學(xué)生先觀(guān)察對比,找出兩個(gè)模擬試驗和例1的共同特點(diǎn),再概括總結得到的結論,教師最后補充說(shuō)明。
[經(jīng)概括總結后得到:
。1)試驗中所有可能出現的基本事件只有有限個(gè);(有限性)
。2)每個(gè)基本事件出現的可能性相等。(等可能性)
我們將具有這兩個(gè)特點(diǎn)的概率模型稱(chēng)為古典概率概型,簡(jiǎn)稱(chēng)古典概型。
「設計意圖」培養運用從具體到抽象、從特殊到一般的辯證唯物主義觀(guān)點(diǎn)分析問(wèn)題的能力,充分體現了數學(xué)的化歸思想。啟發(fā)誘導的同時(shí),訓練了學(xué)生觀(guān)察和概括歸納的能力。通過(guò)列出相同和不同點(diǎn),能讓學(xué)生很好的理解古典概型。
、缬^(guān)察分析、推導方程
問(wèn)題思考:在古典概型下,基本事件出現的概率是多少?隨機事件出現的概率如何計算?
教師提出問(wèn)題,引導學(xué)生類(lèi)比分析兩個(gè)模擬試驗和例1的概率,先通過(guò)用概率加法公式求出隨機事件的概率,再對比概率結果,發(fā)現其中的聯(lián)系,最后概括總結得出古典概型計算任何事件的概率計算公式:
「設計意圖」鼓勵學(xué)生運用觀(guān)察類(lèi)比和從具體到抽象、從特殊到一般的辯證唯物主義方法來(lái)分析問(wèn)題,同時(shí)讓學(xué)生感受數學(xué)化歸思想的優(yōu)越性和這一做法的合理性,突出了古典概型的概率計算公式這一重點(diǎn)。
提問(wèn):
。1)在例1的實(shí)驗中,出現字母"d"的概率是多少?
。2)在使用古典概型的概率公式時(shí),應該注意什么?
「設計意圖」教師提問(wèn),學(xué)生回答,深化對古典概型的概率計算公式的.理解,也抓住了解決古典概型的概率計算的關(guān)鍵。
、枥}分析、推廣應用
例2單選題是標準化考試中常用的題型,一般是從A,B,c,D四個(gè)選項中選擇一個(gè)正確答案。如果考生掌握了考差的內容,他可以選擇唯一正確的答案。假設考生不會(huì )做,他隨機的選擇一個(gè)答案,問(wèn)他答對的概率是多少?
學(xué)生先思考再回答,教師對學(xué)生沒(méi)有注意到的關(guān)鍵點(diǎn)加以說(shuō)明。
「設計意圖」讓學(xué)生明確決概率的計算問(wèn)題的關(guān)鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個(gè)數和試驗中基本事件的總數。鞏固學(xué)生對已學(xué)知識的掌握。
例3同時(shí)擲兩個(gè)骰子,計算:
。1)一共有多少種不同的結果?
。2)其中向上的點(diǎn)數之和是5的結果有多少種?
。3)向上的點(diǎn)數之和是5的概率是多少?
先給出問(wèn)題,再讓學(xué)生完成,然后引導學(xué)生分析問(wèn)題,發(fā)現解答中存在的問(wèn)題。引導學(xué)生用列表來(lái)列舉試驗中的基本事件的總數。
「設計意圖」利用列表數形結合和分類(lèi)討論,既能形象直觀(guān)地列出基本事件的總數,又能做到列舉的不重不漏。深化鞏固對古典概型及其概率計算公式的理解。培養學(xué)生運用數形結合的思想,提高發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力,增強學(xué)生數學(xué)思維情趣,形成學(xué)習數學(xué)知識的積極態(tài)度。
、樘骄克枷、鞏固深化
問(wèn)題思考:為什么要把兩個(gè)骰子標上記號?如果不標記號會(huì )出現什么情況?你能解釋其中的原因嗎?
要求學(xué)生觀(guān)察對比兩種結果,找出問(wèn)題產(chǎn)生的原因。
「設計意圖」通過(guò)觀(guān)察對比,發(fā)現兩種結果不同的根本原因是--研究的問(wèn)題是否滿(mǎn)足古典概型,從而再次突出了古典概型這一教學(xué)重點(diǎn),體現了學(xué)生的主體地位,逐漸養成自主探究能力。
、昕偨Y概括、加深理解
1.基本事件的特點(diǎn)
2.古典概型的特點(diǎn)
3.古典概型的概率計算公式
學(xué)生小結歸納,不足的地方老師補充說(shuō)明。
「設計意圖」使學(xué)生對本節課的知識有一個(gè)系統全面的認識,并把學(xué)過(guò)的相關(guān)知識有機地串聯(lián)起來(lái),便于記憶和應用,也進(jìn)一步升華了這節課所要表達的本質(zhì)思想,讓學(xué)生的認知更上一層。
、氩贾米鳂I(yè)
課本練習1、2、3
「設計意圖」進(jìn)一步讓學(xué)生掌握古典概型及其概率公式,并能夠學(xué)以致用,加深對本節課的理解。
高中數學(xué)說(shuō)課稿6
一、教材分析
1、教材的地位和作用
推理與證明是人教版普通高中課程標準實(shí)驗教科書(shū)選修1—2第二章第一節內容,思想貫穿于高中數學(xué)的整個(gè)知識體系,是新課標教材的亮點(diǎn)之一。本節內容將歸納推理的一般方法進(jìn)行了必要的總結和歸納,同時(shí)也對后繼知識的學(xué)習起到引領(lǐng)的作用、
2、教材處理
《歸納推理》是培養學(xué)生觀(guān)察、分析、發(fā)現、概括、猜想和探索能力的極好素材。根據本節課標要求:從演示觀(guān)察,先形象地真實(shí)舉例,然后轉化為猜想,引導探究典型例子分析,加強對概念的理解。
二、教學(xué)目標分析:
1、知識技能目標:理解歸納推理的概念,了解歸納推理的作用,掌握歸納推理的一般步驟,會(huì )利用歸納進(jìn)行一些簡(jiǎn)單的歸納推理。
2、過(guò)程方法目標:學(xué)生自主學(xué)習歸納推理的一般方法,建構歸納推理的思維方式、讓學(xué)生明白數學(xué)發(fā)現的過(guò)程和方法,培養學(xué)生分析解決問(wèn)題的能力,鍛煉他們探索規律,融會(huì )貫通的能力,并使學(xué)生思維能力得到提升。
3、情感態(tài)度,價(jià)值觀(guān)目標:通過(guò)學(xué)生主動(dòng)探究、合作學(xué)習、相互交流,培養不怕困難、勇于探索的優(yōu)良作風(fēng),增強學(xué)生的數學(xué)應用意識,提高學(xué)生數學(xué)思維的情趣,給學(xué)生成功的體驗,形成學(xué)習數學(xué)知識、了解數學(xué)文化的積極態(tài)度、
三、教學(xué)的重點(diǎn)、難點(diǎn)分析:
1、教學(xué)重點(diǎn):了解歸納推理含義、能利用歸納進(jìn)行簡(jiǎn)單推理。
教學(xué)策略:演示觀(guān)察,先形象地真實(shí)舉例,然后轉化為猜想,引導探究典型例子分析,加強對概念的理解
2、教學(xué)難點(diǎn):用歸納進(jìn)行推理,做出猜想。
教學(xué)策略:第一,創(chuàng )設情景;第二,觀(guān)察規律,得出猜想;第三,實(shí)際應用,提出質(zhì)疑。
四、教法分析、教學(xué)手段與教具選擇:
1、教學(xué)方法:自主探究、協(xié)作學(xué)習、啟發(fā)發(fā)現、課堂討論法
2、教具:多媒體、粉筆、黑板。
3、教學(xué)手段:多媒體教學(xué)課件。
五、學(xué)法分析:
本課教給學(xué)生的學(xué)法是“發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題”。因此本課教學(xué)過(guò)程中,讓學(xué)生帶著(zhù)學(xué)習任務(wù)通過(guò)自主學(xué)習發(fā)現、課堂討論、相互合作等方式,使學(xué)生在完成任務(wù)的過(guò)程中不知不覺(jué)實(shí)現知識的傳遞、遷移和融合。
六、教學(xué)過(guò)程設計分析:
1、創(chuàng )設情景、引入新課
游戲:袋子里裝有大小質(zhì)地一樣的玻璃球,摸一個(gè)出來(lái)是紅色,摸第二個(gè)出來(lái)也是紅色,第三、第四還是紅色…
問(wèn)題1:有什么猜想?
師生活動(dòng):老師把玻璃球攪拌均勻,可叫一個(gè)學(xué)生摸球,其他學(xué)生細心觀(guān)察。
設計意圖:游戲吸引學(xué)生注意力,提高學(xué)習興趣,形象地引出歸納推理。
問(wèn)題2:觀(guān)察10=3+7,12=5+7,32=13+19 …等式特征,有怎樣的規律?
師生活動(dòng):這里要引導學(xué)生觀(guān)察:這是一個(gè)等式,左右兩邊數字有什么特征,學(xué)生的猜想多種多樣,不要抹殺學(xué)生的洞察力,可進(jìn)一步引導學(xué)生嘗試:其它的偶數有同樣的規律嗎?
設計意圖:通過(guò)欣賞一些偉大猜想產(chǎn)生的過(guò)程,探索出歌德巴赫猜想:一個(gè)偶數(不小于6)總可以表示成兩個(gè)奇質(zhì)數之和。帶領(lǐng)學(xué)生走進(jìn)歸納推理的領(lǐng)域。學(xué)生主動(dòng)探究、自我發(fā)現,培養勇于探索的優(yōu)良作風(fēng)。
問(wèn)題3:歌德巴赫猜想的歷史了解嗎?
師生活動(dòng):通過(guò)多媒體讓學(xué)生閱讀材料。
設計意圖:提高學(xué)生數學(xué)思維的情趣,了解數學(xué)文化,對數學(xué)充滿(mǎn)信心的積極態(tài)度,培養愛(ài)國精神。
問(wèn)題4:歌德巴赫猜想的推理過(guò)程如何?
師生活動(dòng):讓學(xué)生探究歌德巴赫是怎樣提出這個(gè)猜想的。
設計意圖:通過(guò)自己發(fā)現歌德巴赫猜想的推理過(guò)程———歸納推理的產(chǎn)生,為理解歸納推理的含義做鋪墊。
問(wèn)題5:由上述推理過(guò)程能否用自己語(yǔ)言描述歸納推理的含義?
師生活動(dòng):學(xué)生自己總結,教師個(gè)別提問(wèn),學(xué)生修改,該問(wèn)題只有部分同學(xué)能及時(shí)地回答出來(lái)。有些同學(xué)猶疑不答,有些同學(xué)會(huì )說(shuō)出不同的語(yǔ)句獲不全面、不十分準確。教師通過(guò)評價(jià)學(xué)生的結論引入歸納推理含義——是由部分到整體、由個(gè)別到一般的推理。
設計意圖:使學(xué)生更深刻理解和記憶歸納推理的含義,培養學(xué)生歸納、總結、理解能力,這比老師直接給出概念效果要好得多。
問(wèn)題6:你能用歸納推理提出一個(gè)猜想嗎?
師生活動(dòng):學(xué)生各抒己見(jiàn),踴躍回答,有生活的,有數學(xué)的,其它學(xué)科的等。例如:
、 金、銀、銅、鐵、鋁等金屬能導電,歸納出“一切金屬都能導電”
、 硫酸、硝酸、碳酸等含有氧元素,歸納出“所有的酸都含有氧元素”
、刍@球、排球、乒乓球等是圓的,歸納出“所有的球都是圓的”
……
可以讓同學(xué)們相互補充,老師適當點(diǎn)評和肯定。
設計意圖:更深一步具體理解歸納推理的含義,初步形成能用歸納推理得出結論的步驟。感受歸納推理無(wú)處不在,自然而有趣,創(chuàng )造和諧積極的學(xué)習氣氛。這比直接解釋概念記憶要深刻和通俗易懂。
2、典型例題、知識應用
例:觀(guān)察右圖,可以發(fā)現
1+3=4=22,
1+3+5=9=32,
1+3+5+7=16=42,
1+3+5+7+9=25=52,
問(wèn)題7:上面等式如何由圖中觀(guān)察出來(lái)?1+3+ …+1999=?由上述具體事實(shí)能得出怎樣的一般性規律?能用一條等式表示出來(lái)嗎?
師生活動(dòng):?jiǎn)?wèn)題逐個(gè)解決,個(gè)別回答,集體回答相結合。部分學(xué)生會(huì )觀(guān)察上式,但不會(huì )從圖中總結規律,這里要從小正方形的個(gè)數或面積去引導他們觀(guān)察,引導學(xué)生得出等式的規律要看等號左右兩邊存在什么規律。
總結:由幾條特殊的等式存在的規律,歸納出一般性的結論1+3+…+(2n-1)=n2(n∈N*)成立,這就是歸納推理。
設計意圖:給出例子讓學(xué)生通過(guò)直觀(guān)感知、觀(guān)察分析、歸納體會(huì )歸納推理的一般步驟,進(jìn)一步感受歸納推理的作用。讓他們懂得數形結合去做題。
問(wèn)題8:
師生活動(dòng):
題目沒(méi)有直接給出部分事物特征,應先找出來(lái)再觀(guān)察、歸納、猜想、引導學(xué)生做題方向,個(gè)別提問(wèn),師生共同完成、總結。
設計意圖:體會(huì )歸納推理的一般步驟,進(jìn)一步感受歸納推理的作用。讓學(xué)生感受歸納推理起到了能夠提供研究方向的作用,培養學(xué)生進(jìn)行歸納推理的能力。
問(wèn)題9、歸納推理的一般步驟如何?
師生活動(dòng):通過(guò)兩個(gè)例題,學(xué)生自行總結,教師綜合結論得出
一般步驟:⑴對有限的資料進(jìn)行觀(guān)察、分析、歸納整理;⑵提出帶有規律性的結論,即猜想;
設計意圖:總結步驟,為后面應用打基礎,讓學(xué)生自行總結充分體現學(xué)生的自主性。
3、思考練習
1)、觀(guān)察下面的`“三角陣”
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 a 5 1
……
1 10 45 … … 45 10 1
試找出相鄰兩行數之間的關(guān)系,并求a
師生活動(dòng):學(xué)生觀(guān)察,尋找規律,老師和學(xué)生共同評價(jià)學(xué)生的觀(guān)察結果并接著(zhù)問(wèn):上面“三角陣”還有其它規律嗎?讓學(xué)生分組討論回答
設計意圖:感受數學(xué)美和發(fā)現規律的喜悅,激發(fā)學(xué)生更積極地去尋找規律、認識規律。同時(shí)讓學(xué)生感受到只要做個(gè)有心人,發(fā)現規律并非難事。
2)、在數列{an}中,若a1=1,
an+1=(n∈N﹡),試猜想這個(gè)數列的通項公式、
師生活動(dòng):請三位學(xué)生上黑板板書(shū),并另請三位批改,讓學(xué)生自己掌握做題方法和步驟
答案:通過(guò)運算a2、a3、a4等的值得出an=
3)、畫(huà)一畫(huà)、猜一猜:根據下列圖案中圓圈的排列規則,猜想第(5)個(gè)圖形是怎樣排列的,由多少個(gè)圓圈組成;第n個(gè)圖形中共有多少個(gè)圓圈?
n=1 n=2 n=3 n=4
師生活動(dòng):由學(xué)生在講義上作圖,發(fā)現規律并總結,再通過(guò)學(xué)生之間充分討論之后相互交流,教師點(diǎn)評。
設計意圖:學(xué)生主動(dòng)探究規律,感受歸納推理對發(fā)現新事實(shí)、得出新結論的作用。引導學(xué)生發(fā)現并總結規律。給學(xué)生創(chuàng )建一個(gè)開(kāi)放的、有活力、有個(gè)性的數學(xué)學(xué)習環(huán)境,感受數學(xué)美和發(fā)現規律的喜悅,激發(fā)學(xué)生更積極地去尋找規律、認識規律。同時(shí)讓學(xué)生感受到只要做個(gè)有心人,發(fā)現規律并非難事。
答案:第5個(gè)圖形中共有圓圈21個(gè);第n個(gè)圖形中共有圓圈:n(n—1)+1個(gè)
4、質(zhì)疑、解疑
問(wèn)題9:猜想的一般結論是否成立?即歸納推理的可靠性如何?為什么要學(xué)習歸納推理?
師生活動(dòng):教師生動(dòng)講述歐拉發(fā)現第五個(gè)費馬數的過(guò)程,激發(fā)學(xué)生的好奇心與求知欲,同時(shí),通過(guò)“猜想——驗證——再猜想”說(shuō)明科學(xué)的進(jìn)步與發(fā)展處在一個(gè)螺旋上升的過(guò)程。
再例:硫酸、硝酸、碳酸等酸中含有氧元素,歸納出“所有的酸都含有氧元素”。反例:鹽酸是酸,但不含氧元素
設計意圖:通過(guò)這個(gè)問(wèn)題情境的設置,引起學(xué)生對歸納推理的結論可靠性進(jìn)行思考。其結論具有猜測性、或然性,不能作為數學(xué)證明的依據。但它是一種具有創(chuàng )造性的推理,為研究問(wèn)題提供一個(gè)方向讓學(xué)生在解決問(wèn)題的過(guò)程中發(fā)現歸納推理需要檢驗過(guò)程,從而自我修正歸納推理的一般步驟。
問(wèn)題10:組織學(xué)生進(jìn)行分組討論,引導學(xué)生從生活和學(xué)習兩大方面對歸納推理的應用進(jìn)行舉例。
師生活動(dòng):分組競賽,挑1、2個(gè)小組的題目出來(lái)讓其他小組進(jìn)行分析。
設計意圖:分組討論降低了概念學(xué)習的難度,加深對歸納推理的應用使學(xué)生能夠更多的圍繞重點(diǎn)展開(kāi)探索和研究。學(xué)生的主體意識在這里獲得充分的體現。
七、課堂小結:
1、你在知識方面學(xué)會(huì )了什么?
2、你注意到過(guò)程與方法了嗎?
3、你在思維和情感方面有何收益?
師生活動(dòng):學(xué)生討論總結,相互補充,教師點(diǎn)評。
設計意圖:讓學(xué)生自己小結,這是一個(gè)多維整合的過(guò)程,是一個(gè)高層次的自我認識過(guò)程。
八、作業(yè)
1、(必做題)課本P30第1題
2、(選做題):猜想10條直線(xiàn)的交點(diǎn)最多有多少個(gè)?(畫(huà)圖分析)答案:45個(gè)
3、課后學(xué)習:上網(wǎng)查找了解有關(guān)“四色猜想”、“哥尼斯堡七橋猜想”、“敘拉古猜想”、“費馬猜想”等資料
設計意圖:設計必做題是知識的初步應用和基礎知識的鞏固選做題是針對學(xué)有余力的同學(xué)提升高度,鏈接高考。思考題是開(kāi)放性題目,拓展學(xué)生思維,用資料進(jìn)行數學(xué)學(xué)習,同時(shí)讓學(xué)生了解網(wǎng)絡(luò )是自主學(xué)習和拓展知識面的一個(gè)重要平臺。這是本節內容的一個(gè)提高與拓展。
九、教學(xué)效果分析:
本節課以問(wèn)題為載體,設計情景,生活、數學(xué)實(shí)力生動(dòng)地學(xué)習了歸納推理的知識,體現了學(xué)生主動(dòng),教師指導的地位。本節課在注重基礎知識的同時(shí)培養學(xué)生歸納推理的能力,在尊重學(xué)生個(gè)性差異的基礎上選擇合適的例題、習題,為不同層次學(xué)生的學(xué)習提供了廣闊的空間。以分組討論為探究的基本形式,激勵學(xué)生積極主動(dòng)地探索結論,同時(shí)利用著(zhù)名猜想讓學(xué)生體會(huì )數學(xué)的人文價(jià)值。通過(guò)生活實(shí)例和數學(xué)實(shí)例,使學(xué)生了解歸納推理的涵義,感受歸納推理能猜測和發(fā)現一些新結論,探索和提供解決一些問(wèn)題的思路和方向的作用,并能運用歸納進(jìn)行簡(jiǎn)單的推理、
十、板書(shū)設計
歸納推理
一、推理
二、歸納推理的含義
三、歸納推理的應用
四、歸納推理的一般步驟
五、小結
例1
例2
練習
高中數學(xué)說(shuō)課稿7
尊敬的各位考官:
大家好!
我是今天的x號考生,今天我說(shuō)課的題目是《直線(xiàn)與平面平行的判定》。
高中數學(xué)課程以學(xué)生發(fā)展為本,提升數學(xué)學(xué)科核心素養。這節課我將秉承這一教學(xué)理念,從教材分析、教學(xué)目標、教學(xué)過(guò)程等幾個(gè)方面來(lái)展開(kāi)我的說(shuō)課。
一、說(shuō)教材
本節課選自人教A版高中數學(xué)必修2第二章第2節。此前學(xué)生對空間立體幾何已經(jīng)有了一定的感知。通過(guò)本節課的學(xué)習,能使學(xué)生進(jìn)一步了解空間中直線(xiàn)與平面平行關(guān)系的判定方法,培養學(xué)生的邏輯思維和空間想象能力。
二、說(shuō)學(xué)情
學(xué)生已經(jīng)學(xué)習了空間中點(diǎn)、直線(xiàn)、平面間的位置關(guān)系,知道若直線(xiàn)與平面平行,則沒(méi)有公共點(diǎn),但直接利用定義無(wú)法進(jìn)行判斷。因而我會(huì )注意在教學(xué)時(shí)逐步引導學(xué)生,在辯證思考中探索直線(xiàn)與平面平行的'條件。
三、說(shuō)教學(xué)目標
根據以上對教材的分析和對學(xué)情的把握,我設置本節課的教學(xué)目標如下:
。ㄒ唬┲R與技能
掌握直線(xiàn)與平面平行的判定定理,會(huì )用文字語(yǔ)言、符號語(yǔ)言和圖形語(yǔ)言描述判定定理,并會(huì )進(jìn)行簡(jiǎn)單應用。
。ǘ┻^(guò)程與方法
通過(guò)直觀(guān)感知、觀(guān)察、操作確認的認知過(guò)程,培養空間想象力和邏輯思維能力,體會(huì )“降維”的思想。
。ㄈ┣楦、態(tài)度與價(jià)值觀(guān)
通過(guò)生活中的實(shí)例,體會(huì )平行關(guān)系在生活中的廣泛應用;在探究線(xiàn)面平行判定定理的過(guò)程中,形成學(xué)習數學(xué)的積極態(tài)度。
四、說(shuō)教學(xué)重難點(diǎn)
根據學(xué)生現有的知識儲備和知識本身的難易程度,我設置本節課教學(xué)重點(diǎn)為:直線(xiàn)與平面平行的判定定理。教學(xué)難點(diǎn)為:直線(xiàn)與平面平行的判定定理的探究。
五、說(shuō)教法和學(xué)法
為達成教學(xué)目標,突破教學(xué)重難點(diǎn),本節課我將采用講授法、自主探究法、練習法等教學(xué)方法,以達到教與學(xué)的和諧完美統一。
六、說(shuō)教學(xué)過(guò)程
下面我將重點(diǎn)談?wù)勎业慕虒W(xué)過(guò)程。
。ㄒ唬┮胄抡n
導入環(huán)節我會(huì )帶領(lǐng)學(xué)生從文字語(yǔ)言、圖形語(yǔ)言和符號語(yǔ)言這三個(gè)角度復習直線(xiàn)與平面有哪些位置關(guān)系。接著(zhù)我會(huì )請學(xué)生思考,該如何判定直線(xiàn)與平面平行。根據定義,只需判定直線(xiàn)與平面沒(méi)有公共點(diǎn)即可。但直線(xiàn)無(wú)限伸長(cháng),平面無(wú)限延展,如何保證直線(xiàn)與平面無(wú)公共點(diǎn)。由此引發(fā)認知沖突,引入本節課的學(xué)習。
通過(guò)復習導入,不僅鞏固了之前所學(xué),建立起新舊知識之間的聯(lián)系,而且能夠有效激發(fā)起學(xué)生的學(xué)習興趣,從而為下面的學(xué)習打好基礎。
。ǘ┲v解新知
接下來(lái)是新知講解環(huán)節。
我會(huì )請學(xué)生觀(guān)察,教室門(mén)扇的兩邊是平行的,當門(mén)扇繞著(zhù)一邊轉動(dòng)時(shí),觀(guān)察門(mén)扇轉動(dòng)的一邊和門(mén)框所在平面有怎樣的位置關(guān)系。并組織學(xué)生動(dòng)手操作,將書(shū)本平放在桌面上,翻動(dòng)書(shū)的封面,封面邊緣所在直線(xiàn)與桌面所在平面具有什么樣的位置關(guān)系。
學(xué)生不難看出其中的平行關(guān)系。在此基礎上,我會(huì )請學(xué)生同桌兩人交流討論,如果直線(xiàn)與平面平行,則這條直線(xiàn)與平面內多少條直線(xiàn)平行。如果這條直線(xiàn)平行于平面內的無(wú)數條直線(xiàn),那么這條直線(xiàn)是否一定與這個(gè)平面平行。
。ㄈ┱n堂練習
除了知道知識,學(xué)生還要能對知識進(jìn)行應用。我會(huì )出示以下練習題:求證空間四邊形相鄰兩邊中點(diǎn)的連線(xiàn)平行于另外兩邊所在的平面。結合這一練習題,我會(huì )進(jìn)一步強調,線(xiàn)面平行問(wèn)題可轉化為線(xiàn)線(xiàn)平行問(wèn)題。這也為之后線(xiàn)面、面面關(guān)系的學(xué)習奠定基礎。
。ㄋ模┬〗Y作業(yè)
課堂小結部分,我會(huì )充分發(fā)揮學(xué)生的主體性,請學(xué)生說(shuō)一說(shuō)本節課的收獲。收獲不僅僅只是知識方面,也可以說(shuō)一說(shuō)這節課學(xué)到的思想方法等,進(jìn)一步培養學(xué)生的綜合素質(zhì)。
課后作業(yè)我會(huì )請學(xué)生完成書(shū)上相應練習題,使學(xué)生在課后也能得到思考,夯實(shí)學(xué)生對于新知的掌握。
七、說(shuō)板書(shū)設計
我的板書(shū)設計遵循簡(jiǎn)潔明了、突出重點(diǎn)的原則,以下是我的板書(shū)設計:
略。
高中數學(xué)說(shuō)課稿8
各位評委老師,上午好,我是xx號考生葉新穎。今天我的說(shuō)課題目是集合。首先我們來(lái)進(jìn)行教材分析。
教材分析
集合概念及其基本理論,稱(chēng)為集合論,是近、現代數學(xué)的一個(gè)重要的基礎,一方面,許多重要的數學(xué)分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學(xué)思想,在越來(lái)越廣泛的領(lǐng)域種得到應用。
本節課主要分為兩個(gè)部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關(guān)系。
教學(xué)目標
1、學(xué)習目標
。1)通過(guò)實(shí)例,了解集合的含義,體會(huì )元素與集合之間的關(guān)系以及理解“屬于”關(guān)系;
。2)能選擇自然語(yǔ)言、圖形語(yǔ)言、集合語(yǔ)言(列舉法或描述法)描述不同的具體問(wèn)題,感受集合語(yǔ)言的意義和作用;
2、能力目標
。1)能夠把一句話(huà)一個(gè)事件用集合的方式表示出來(lái)。
。2)準確理解集合與及集合內的元素之間的關(guān)系。
3、情感目標
通過(guò)本節的把實(shí)際事件用集合的方式表示出來(lái),從而培養數學(xué)敏感性,了解到數學(xué)于生活中。
教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):集合的基本概念與表示方法;
難點(diǎn):運用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡(jiǎn)單的集合;
教學(xué)方法
。1)本課將采用探究式教學(xué),讓學(xué)生主動(dòng)去探索,激發(fā)學(xué)生的學(xué)習興趣。并分層教學(xué),這樣可顧及到全體學(xué)生,達到優(yōu)生得到培養,后進(jìn)生也有所收獲的效果;
。2)學(xué)生在老師的引導下,通過(guò)閱讀教材,自主學(xué)習、思考、交流、討論和概括,從而完成本節課的教學(xué)目標。
學(xué)習方法
。1)主動(dòng)學(xué)習法:舉出例子,提出問(wèn)題,讓學(xué)生在獲得感性認識的同時(shí),
教師層層深入,啟發(fā)學(xué)生積極思維,主動(dòng)探索知識,培養學(xué)生思維想象的綜合能力。
。2)反饋補救法:在練習中,注意觀(guān)察學(xué)生對學(xué)習的反饋情況,以實(shí)現“培
優(yōu)扶差,滿(mǎn)足不同!
教學(xué)思路,具體的思路如下
一、引入課題
軍訓前學(xué)校通知:8月15日8點(diǎn),高一年段在體育館集合進(jìn)行軍訓動(dòng)員;試問(wèn)這個(gè)通知的對象是全體的高一學(xué)生還是個(gè)別學(xué)生?
在這里,集合是我們常用的一個(gè)詞語(yǔ),我們感興趣的是問(wèn)題中某些特定(是高一而不是高二、高三)對象的總體,而不是個(gè)別的對象,為此,我們將學(xué)習一個(gè)新的概念——集合,即是一些研究對象的總體。
二、正體部分
學(xué)生閱讀教材,并思考下列問(wèn)題:
。1)集合有那些概念?
。2)集合有那些符號?
。3)集合中元素的特性是什么?
。4)如何給集合分類(lèi)?
。ㄒ唬┘系挠嘘P(guān)概念
。1)對象:我們可以感覺(jué)到的客觀(guān)存在以及我們思想中的事物或抽象符號,都可以稱(chēng)作對象.
。2)集合:把一些能夠確定的不同的對象看成一個(gè)整體,就說(shuō)這個(gè)整體是由這些對象的全體構成的集合.
。3)元素:集合中每個(gè)對象叫做這個(gè)集合的元素.集合通常用大寫(xiě)的拉丁字母表示,如A、B、C、元素通常用小寫(xiě)的
拉丁字母表示,如a、b、c、
1.思考:課本P3的思考題,并再列舉一些集合例子和不能構成集合的例子,對學(xué)生的例子予以討論、點(diǎn)評,進(jìn)而講解下面的問(wèn)題。
2、元素與集合的關(guān)系
。1)屬于:如果a是集合A的元素,就說(shuō)a屬于A(yíng),記作a∈A。(舉例)
集合A={2,3,4,6,9}a=2因此我們知道a∈A(2)不屬于:如果a不是集合A的元素,就說(shuō)a不屬于A(yíng),記作aA
要注意“∈”的方向,不能把a∈A顛倒過(guò)來(lái)寫(xiě).(舉例)集合A={3,4,6,9}a=2因此我們知道aA
3、集合中元素的特性(1)確定性:(2)互異性:(3)無(wú)序性:
4、集合分類(lèi)
根據集合所含元素個(gè)屬不同,可把集合分為如下幾類(lèi):
。1)把不含任何元素的集合叫做空集Ф
。2)含有有限個(gè)元素的集合叫做有限集
。3)含有無(wú)窮個(gè)元素的集合叫做無(wú)限集注:應區分,{},{0},0等符號的含義
5、常用數集及其表示方法
。1)非負整數集(自然數集):全體非負整數的集合.記作N
。2)正整數集:非負整數集內排除0的集.記作N*或N+
。3)整數集:全體整數的集合.記作Z
。4)有理數集:全體有理數的集合.記作Q
。5)實(shí)數集:全體實(shí)數的集合.記作R注:
。1)自然數集包括數0.
。2)非負整數集內排除0的集.記作N*或N+,Q、Z、R等其它數集內排除0的'集,也這樣表示,例如,整數集內排除0的集,表示成Z*
。ǘ┘系谋硎痉椒
我們可以用自然語(yǔ)言來(lái)描述一個(gè)集合,但這將給我們帶來(lái)很多不便,除此之外還常用列舉法和描述法來(lái)表示集合。
。1)列舉法:把集合中的元素一一列舉出來(lái),寫(xiě)在大括號內。如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},;例1.(課本例1)思考2,引入描述法
說(shuō)明:集合中的元素具有無(wú)序性,所以用列舉法表示集合時(shí)不必考慮元素的順序。
。2)描述法:把集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號{}內。具體方法:在大括號內先寫(xiě)上表示這個(gè)集合元素的一般符號及取值(或變化)范圍,再畫(huà)一條豎線(xiàn),在豎線(xiàn)后寫(xiě)出這個(gè)集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},;例2.(課本例2)說(shuō)明:(課本P5最后一段)思考3:(課本P6思考)
強調:描述法表示集合應注意集合的代表元素
{(x,y)|y=x2+3x+2}與{y|y=x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數},即代表整數集Z。
辨析:這里的{}已包含“所有”的意思,所以不必寫(xiě){全體整數}。下列寫(xiě)法{實(shí)數集},{R}也是錯誤的。
說(shuō)明:列舉法與描述法各有優(yōu)點(diǎn),應該根據具體問(wèn)題確定采用哪種表示法,要注意,一般集合中元素較多或有無(wú)限個(gè)元素時(shí),不宜采用列舉法。
。ㄈ┱n堂練習(課本P6練習)
三、歸納小結與作業(yè)
本節課從實(shí)例入手,非常自然貼切地引出集合與集合的概念,并且結合實(shí)例對集合的概念作了說(shuō)明,然后介紹了集合的常用表示方法,包括列舉法、描述法。
書(shū)面作業(yè):習題1.1,第1-4題。
高中數學(xué)說(shuō)課稿9
一、教材分析
(一)教材的地位和作用
“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運用與鞏固,也為下一章函數的定義域和值域教學(xué)作鋪墊,起著(zhù)鏈條的作用。同時(shí),這部分內容較好地反映了方程、不等式、函數知識的內在聯(lián)系和相互轉化,蘊含著(zhù)歸納、轉化、數形結合等豐富的數學(xué)思想方法,能較好地培養學(xué)生的觀(guān)察能力、概括能力、探究能力及創(chuàng )新意識。
(二)教學(xué)內容
本節內容分2課時(shí)學(xué)習。本課時(shí)通過(guò)二次函數的圖象探索一元二次不等式的解集。通過(guò)復習“三個(gè)一次”的關(guān)系,即一次函數與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個(gè)二次”的關(guān)系,即二次函數與一元二次方程、一元二次不等式的關(guān)系;采用“畫(huà)、看、說(shuō)、用”的思維模式,得出一元二次不等式的解集,品味數學(xué)中的和諧美,體驗成功的樂(lè )趣。
二、教學(xué)目標分析
根據教學(xué)大綱的要求、本節教材的特點(diǎn)和高一學(xué)生的認知規律,本節課的教學(xué)目標確定為:
知識目標——理解“三個(gè)二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的.解法。
能力目標——通過(guò)看圖象找解集,培養學(xué)生“從形到數”的轉化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。
情感目標——創(chuàng )設問(wèn)題情景,激發(fā)學(xué)生觀(guān)察、分析、探求的學(xué)習激情、強化學(xué)生參與意識及主體作用。
三、重難點(diǎn)分析
一元二次不等式是高中數學(xué)中最基本的不等式之一,是解決許多數學(xué)問(wèn)題的重要工具。本節課的重點(diǎn)確定為:一元二次不等式的解法。
要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解并掌握利用二次函數的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數形結合的思想方法認識方程的解,不等式的解集與函數圖象上對應點(diǎn)的橫坐標的內在聯(lián)系。由于初中沒(méi)有專(zhuān)門(mén)研究過(guò)這類(lèi)問(wèn)題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節課的難點(diǎn)確定為:“三個(gè)二次”的關(guān)系。要突破這個(gè)難點(diǎn),讓學(xué)生歸納“三個(gè)一次”的關(guān)系作鋪墊。
四、教法與學(xué)法分析
(一)學(xué)法指導
教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì )學(xué)是目的。因此在教學(xué)中要不斷指導學(xué)生學(xué)會(huì )學(xué)習。本節課主要是教給學(xué)生“動(dòng)手畫(huà)、動(dòng)眼看、動(dòng)腦想、動(dòng)口說(shuō)、善提煉、勤鉆研”的研討式學(xué)習方法,這樣做增加了學(xué)生自主參與,合作交流的機會(huì ),教給了學(xué)生獲取知識的途徑、思考問(wèn)題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會(huì )逐步感受到數學(xué)的美,會(huì )產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習數學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應素質(zhì)教育下培養“創(chuàng )新型”人才的需要。
(二)教法分析
本節課設計的指導思想是:現代認知心理學(xué)——建構主義學(xué)習理論。
建構主義學(xué)習理論認為:應把學(xué)習看成是學(xué)生主動(dòng)的建構活動(dòng),學(xué)生應與一定的知識背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習,可以使學(xué)生利用已有知識與經(jīng)驗同化和索引出當前要學(xué)習的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問(wèn)題情景中。
本節課采用“誘思引探教學(xué)法”。把問(wèn)題作為出發(fā)點(diǎn),指導學(xué)生“畫(huà)、看、說(shuō)、用”。較好地探求一元二次不等式的解法。
五、課堂設計
本節課的教學(xué)設計充分體現以學(xué)生發(fā)展為本,培養學(xué)生的觀(guān)察、概括和探究能力,遵循學(xué)生的認知規律,體現理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過(guò)問(wèn)題情境的創(chuàng )設,激發(fā)興趣,使學(xué)生在問(wèn)題解決的探索過(guò)程中,由學(xué)會(huì )走向會(huì )學(xué),由被動(dòng)答題走向主動(dòng)探究。
(一)創(chuàng )設情景,引出“三個(gè)一次”的關(guān)系
本節課開(kāi)始,先讓學(xué)生解一元二次方程x2-x-6=0,如果我把“=”改成“>”則變成一元二次不等式x2-x-6>0讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問(wèn)開(kāi)始”,這樣直奔主題,目的在于構造懸念,激活學(xué)生的思維興趣。
為此,我設計了以下幾個(gè)問(wèn)題:
1、請同學(xué)們解以下方程和不等式:
、2x-7=0;②2x-7>0;③2x-7<0
學(xué)生回答,我板書(shū)
高中數學(xué)說(shuō)課稿10
一、說(shuō)教材:
1、地位、作用和特點(diǎn):
《 》是高中數學(xué)課本第 冊( 修)的第 章“ ”的第 節內容,高中數學(xué)課本說(shuō)課稿。
本節是在學(xué)習了 之后編排的。通過(guò)本節課的學(xué)習,既可以對 的知識進(jìn)一步鞏固和深化,又可以為后面學(xué)習 打下基礎,所以
是本章的重要內容。此外,《 》的知識與我們日常生活、生產(chǎn)、科學(xué)研究 有著(zhù)密切的聯(lián)系,因此學(xué)習這部分有著(zhù)廣泛的現實(shí)意義。本節的特點(diǎn)之一是;
特點(diǎn)之二是: 。
教學(xué)目標:
根據《教學(xué)大綱》的要求和學(xué)生已有的知識基礎和認知能力,確定以下教學(xué)目標:
。1)知識目標:A、B、C
。2)能力目標:A、B、C
。3)德育目標:A、B
教學(xué)的重點(diǎn)和難點(diǎn):
。1)教學(xué)重點(diǎn):
。2)教學(xué)難點(diǎn):
二、說(shuō)教法:
基于上面的教材分析,我根據自己對研究性學(xué)習“啟發(fā)式”教學(xué)模式和新課程改革的理論認識,結合本校學(xué)生實(shí)際,主要突出了幾個(gè)方面:一是創(chuàng )設問(wèn)題情景,充分調動(dòng)學(xué)生求知欲,并以此來(lái)激發(fā)學(xué)生的探究心理。二是運用啟發(fā)式教學(xué)方法,就是把教和學(xué)的各種方法綜合起來(lái)統一組織運用于教學(xué)過(guò)程,以求獲得最佳效果。另外還注意獲得和交換信息渠道的綜合、教學(xué)手段的綜合和課堂內外的綜合。并且在整個(gè)教學(xué)設計盡量做到注意學(xué)生的心理特點(diǎn)和認知規律,觸發(fā)學(xué)生的思維,使教學(xué)過(guò)程真正成為學(xué)生的學(xué)習過(guò)程,以思維教學(xué)代替單純的記憶教學(xué)。三是注重滲透數學(xué)思考方法(聯(lián)想法、類(lèi)比法、數形結合等一般科學(xué)方法)。讓學(xué)生在探索學(xué)習知識的過(guò)程中,領(lǐng)會(huì )常見(jiàn)數學(xué)思想方法,培養學(xué)生的探索能力和創(chuàng )造性素質(zhì)。四是注意在探究問(wèn)題時(shí)留給學(xué)生充分的時(shí)間,以利于開(kāi)放學(xué)生的思維。當然這就應在處理教學(xué)內容時(shí)能夠做到葉老師所說(shuō)“教就是為了不教”。因此,擬對本節課設計如下教學(xué)程序:
導入新課 新課教學(xué)
反饋發(fā)展
三、說(shuō)學(xué)法:
學(xué)生學(xué)習的過(guò)程實(shí)際上就是學(xué)生主動(dòng)獲取、整理、貯存、運用知識和獲得學(xué)習能力的過(guò)程,因此,我覺(jué)得在教學(xué)中,指導學(xué)生學(xué)習時(shí),應盡量避免單純地、直露地向學(xué)生灌輸某種學(xué)習方法。有效的能被學(xué)生接受的學(xué)法指導應是滲透在教學(xué)過(guò)程中進(jìn)行的,是通過(guò)優(yōu)化教學(xué)程序來(lái)增強學(xué)法指導的目的性和實(shí)效性。在本節課的教學(xué)中主要滲透以下幾個(gè)方面的學(xué)法指導。
1、培養學(xué)生學(xué)會(huì )通過(guò)自學(xué)、觀(guān)察、實(shí)驗等方法獲取相關(guān)知識,使學(xué)生在探索研究過(guò)程中分析、歸納、推理能力得到提高。
本節教師通過(guò)列舉具體事例來(lái)進(jìn)行分析,歸納出 ,并依
據此知識與具體事例結合、推導出 ,這正是一個(gè)分析和推理的全過(guò)程。
2、讓學(xué)生親自經(jīng)歷運用科學(xué)方法探索的過(guò)程。 主要是努力創(chuàng )設應用科學(xué)方法探索、解決問(wèn)題情境,讓學(xué)生在探索中體會(huì )科學(xué)方法,如在講授 時(shí),可通過(guò)
演示,創(chuàng )設探索 規律的情境,引導學(xué)生以可靠的事實(shí)為基礎,經(jīng)過(guò)抽象思維揭示內在規律,從而使學(xué)生領(lǐng)悟到把可靠的事實(shí)和深刻的理論思維結合起來(lái)的特點(diǎn)。
3、讓學(xué)生在探索性實(shí)驗中自己摸索方法,觀(guān)察和分析現象,從而發(fā)現“新”的問(wèn)題或探索出“新”的規律。從而培養學(xué)生的發(fā)散思維和收斂思維能力,激發(fā)學(xué)生的創(chuàng )造動(dòng)力。在實(shí)踐中要盡可能讓學(xué)生多動(dòng)腦、多動(dòng)手、多觀(guān)察、多交流、多分析;老師要給學(xué)生多點(diǎn)撥、多啟發(fā)、多激勵,不斷地尋找學(xué)生思維和操作上的閃光點(diǎn),及時(shí)總結和推廣。
4、在指導學(xué)生解決問(wèn)題時(shí),引導學(xué)生通過(guò)比較、猜測、嘗試、質(zhì)疑、發(fā)現等探究環(huán)節選擇合適的概念、規律和解決問(wèn)題方法,從而克服思維定勢的消極影響,促進(jìn)知識的正向遷移。如教師引導學(xué)生對比中,蘊含的本質(zhì)差異,從而擺脫知識遷移的負面影響。這樣,既有利于學(xué)生養成認真分析過(guò)程、善于比較的.好習慣,又有利于培養學(xué)生通過(guò)現象發(fā)掘知識內在本質(zhì)的能力。
四、教學(xué)過(guò)程:
。ㄒ唬、課題引入:
教師創(chuàng )設問(wèn)題情景(創(chuàng )設情景:A、教師演示實(shí)驗。B、使用多媒體模擬一些比較有趣、與生活實(shí)踐比較有關(guān)的事例,教案《高中數學(xué)課本說(shuō)課稿》。C、講述數學(xué)科學(xué)史上的有關(guān)情況。)激發(fā)學(xué)生的探究欲望,引導學(xué)生提出接下去要研究的問(wèn)題。
。ǘ、新課教學(xué):
1、針對上面提出的問(wèn)題,設計學(xué)生動(dòng)手實(shí)踐,讓學(xué)生通過(guò)動(dòng)手探索有關(guān)的知識,并引導學(xué)生進(jìn)行交流、討論得出新知,并進(jìn)一步提出下面的問(wèn)題。
2、組織學(xué)生進(jìn)行新問(wèn)題的實(shí)驗方法設計—這時(shí)在設計上最好是有對比性、數學(xué)方法性的設計實(shí)驗,指導學(xué)生實(shí)驗、通過(guò)多媒體的輔助,顯示學(xué)生的實(shí)驗數據,模擬強化出實(shí)驗情況,由學(xué)生分析比較,歸納總結出知識的結構。
。ㄈ、實(shí)施反饋:
1、課堂反饋,遷移知識(最好遷移到與生活有關(guān)的例子)。讓學(xué)生分析有關(guān)的問(wèn)題,實(shí)現知識的升華、實(shí)現學(xué)生的再次創(chuàng )新。
2、課后反饋,延續創(chuàng )新。通過(guò)課后練習,學(xué)生互改作業(yè),課后研實(shí)驗,實(shí)現課堂內外的綜合,實(shí)現創(chuàng )新精神的延續。
五、板書(shū)設計:
在教學(xué)中我把黑板分為三部分,把知識要點(diǎn)寫(xiě)在左側,中間知識推導過(guò)程,右邊實(shí)例應用。
六、說(shuō)課綜述:
以上是我對《 》這節教材的認識和對教學(xué)過(guò)程的設計。在整個(gè)課堂中,我引導學(xué)生回顧前面學(xué)過(guò)的 知識,并把它運用到對
的認識,使學(xué)生的認知活動(dòng)逐步深化,既掌握了知識,又學(xué)會(huì )了方法。
總之,對課堂的設計,我始終在努力貫徹以教師為主導,以學(xué)生為主體,以問(wèn)題為基礎,以能力、方法為主線(xiàn),有計劃培養學(xué)生的自學(xué)能力、觀(guān)察和實(shí)踐能力、思維能力、應用知識解決實(shí)際問(wèn)題的能力和創(chuàng )造能力為指導思想。并且能從各種實(shí)際出發(fā),充分利用各種教學(xué)手段來(lái)激發(fā)學(xué)生的學(xué)習興趣,體現了對學(xué)生創(chuàng )新意識的培養。
高中數學(xué)說(shuō)課稿11
尊敬的各位評委、各位老師:
大家好!我說(shuō)課的題目是《直線(xiàn)的點(diǎn)斜式方程》,選自人民教育出版社普通高中課程標準試驗教科書(shū)數學(xué)必修2(A版),是第三章直線(xiàn)與方程中的第2節的第一課時(shí)3.2.1直線(xiàn)的點(diǎn)斜式方程的內容。下面我將從教學(xué)背景、教學(xué)方法、教學(xué)過(guò)程及教學(xué)特點(diǎn)等四個(gè)方面具體說(shuō)明。
一、教學(xué)背景的分析
1、教材分析直線(xiàn)的方程是學(xué)生在初中學(xué)習了一次函數的概念和圖象及高中學(xué)習了直線(xiàn)的斜率后進(jìn)行研究的。直線(xiàn)的方程屬于解析幾何學(xué)的基礎知識,是研究解析幾何學(xué)的開(kāi)始,對后續研究?jì)蓷l直線(xiàn)的位置關(guān)系、圓的方程、直線(xiàn)與圓的位置關(guān)系、圓錐曲線(xiàn)等內容,無(wú)論在知識上還是方法上都是地位顯要,作用非同尋常,是本章的重點(diǎn)內容之一!爸本(xiàn)的點(diǎn)斜式方程”可以說(shuō)是直線(xiàn)的方程的形式中最重要、最基本的形式,在此花多大的時(shí)間和精力都不為過(guò)。直線(xiàn)作為常見(jiàn)的最簡(jiǎn)單的曲線(xiàn),在實(shí)際生活和生產(chǎn)實(shí)踐中有著(zhù)廣泛的應用。同時(shí)在這一節中利用坐標法來(lái)研究曲線(xiàn)的數形結合、幾何直觀(guān)等數學(xué)思想將貫穿于我們整個(gè)高中數學(xué)教學(xué)。
2、學(xué)情分析我校的生源較差,學(xué)生的基礎和學(xué)習習慣都有待加強。又由于剛開(kāi)始學(xué)習解析幾何,第一次用坐標法來(lái)求曲線(xiàn)的方程,在學(xué)習過(guò)程中,會(huì )出現“數”與“形”相互轉化的困難。另外我校學(xué)生在探究問(wèn)題的能力,合作交流的意識等方面更有待加強。根據上述教材分析,考慮到學(xué)生已有的認知結構和心理特征,我制定如下教學(xué)目標:
3、教學(xué)目標
。1)了解直線(xiàn)的方程的概念和直線(xiàn)的點(diǎn)斜式方程的推導過(guò)程及方法;
。2)明確點(diǎn)斜式、斜截式方程的形式特點(diǎn)和適用范圍;初步學(xué)會(huì )準確地使用直線(xiàn)的點(diǎn)斜式、斜截式方程;
。3)從實(shí)例入手,通過(guò)類(lèi)比、推廣、特殊化等,使學(xué)生體會(huì )從特殊到一般再到特殊的認知規律;
。4)提倡學(xué)生用舊知識解決新問(wèn)題,通過(guò)體會(huì )直線(xiàn)的斜截式方程與一次函數的關(guān)系等活動(dòng),培養學(xué)生主動(dòng)探究知識、合作交流的意識,并初步了解數形結合在解析幾何中的應用。
4、教學(xué)重點(diǎn)與難點(diǎn)
。1)重點(diǎn):直線(xiàn)點(diǎn)斜式、斜截式方程的特點(diǎn)及其初步應用。
。2)難點(diǎn):直線(xiàn)的方程的概念,點(diǎn)斜式方程的推導及點(diǎn)斜式、斜截式方程的應用。
二、教法學(xué)法分析
1.教法分析:根據學(xué)情,為了能調動(dòng)學(xué)生學(xué)習的積極性,本節課采用“實(shí)例引導的啟發(fā)式”問(wèn)題教學(xué)法。幫助學(xué)生將幾何問(wèn)題代數化,用代數的語(yǔ)言描述直線(xiàn)的幾何要素及其關(guān)系,進(jìn)而將直線(xiàn)的問(wèn)題轉化為直線(xiàn)方程的問(wèn)題,通過(guò)對直線(xiàn)的方程的研究,最終解決有關(guān)直線(xiàn)的一些簡(jiǎn)單的問(wèn)題。另外可以恰當的利用多媒體課件進(jìn)行輔助教學(xué),激發(fā)學(xué)生的學(xué)習興趣。
2.學(xué)法分析:學(xué)生從問(wèn)題中嘗試、總結、質(zhì)疑、運用,體會(huì )學(xué)習數學(xué)的樂(lè )趣;通過(guò)推導直線(xiàn)的點(diǎn)斜式方程的學(xué)習,要了解用坐標法求方程的思想;通過(guò)一個(gè)點(diǎn)和方向可以確定一條直線(xiàn),進(jìn)而可求出直線(xiàn)的點(diǎn)斜式方程,要能體會(huì )“形”與“數”的轉化思想。下面我就對具體的教學(xué)過(guò)程和設計加以說(shuō)明:
三、教學(xué)過(guò)程的設計及實(shí)施
整個(gè)教學(xué)過(guò)程是由六個(gè)問(wèn)題組成,共分為四個(gè)環(huán)節,學(xué)習或涉及四個(gè)概念:溫故知新,澄清概念————直線(xiàn)的方程深入探究,獲得新知————————點(diǎn)斜式拓展知識,再獲新知————————斜截式小結引申,思維延續————————兩點(diǎn)式平面上的點(diǎn)可以用坐標表示,直線(xiàn)的傾斜程度可以用斜率表示,那么平面上的直線(xiàn)如何表示呢?這就是本節要學(xué)習的內容。
。ㄒ唬毓手,澄清概念————直線(xiàn)的方程問(wèn)題一:畫(huà)出一次函數y=2x+1的圖象;y=2x+1是一個(gè)方程嗎?若是,那么方程的解與圖象上的點(diǎn)的坐標有何關(guān)系?
[學(xué)生活動(dòng)]
通過(guò)動(dòng)手畫(huà)圖,思考并嘗試用語(yǔ)言進(jìn)行初步的表述。
[教師活動(dòng)]
對于不同學(xué)生的表述進(jìn)行分析、歸納,用規范的語(yǔ)言對方程和直線(xiàn)的方程進(jìn)行描述。
[設計意圖]
從學(xué)生熟知的舊知識出發(fā)澄清直線(xiàn)的方程的`概念,試圖做到“用學(xué)生已有的數學(xué)知識去學(xué)數學(xué)”,從而突破難點(diǎn)。通過(guò)對這個(gè)問(wèn)題的研究,一方面認識到以方程的解為坐標的點(diǎn)在直線(xiàn)上,另一方面認識到直線(xiàn)上的點(diǎn)的坐標滿(mǎn)足方程;從而使同學(xué)意識到直線(xiàn)可以由直線(xiàn)上任意一點(diǎn)P(x,y)的坐標x和y之間的等量關(guān)系來(lái)表示。問(wèn)題二:若直線(xiàn)經(jīng)過(guò)點(diǎn)A(—1,3),斜率為—2,點(diǎn)P在直線(xiàn)l上。
。1)若點(diǎn)P在直線(xiàn)l上從A點(diǎn)開(kāi)始運動(dòng),橫坐標增加1時(shí),點(diǎn)P的坐標是;
。2)畫(huà)出直線(xiàn)l,你能求出直線(xiàn)l的方程嗎?
。3)若點(diǎn)P在直線(xiàn)l上運動(dòng),設P點(diǎn)的坐標為(x,y),你會(huì )有什么方法找到x,y滿(mǎn)足的關(guān)系式?
[學(xué)生活動(dòng)]
學(xué)生獨立思考5分鐘,必要的話(huà)可進(jìn)行分組討論、合作交流。
[教師活動(dòng)]
巡視?隙▽W(xué)生的各種方法及大膽嘗試的行為;并引導學(xué)生觀(guān)察發(fā)現,得到當點(diǎn)P在直線(xiàn)l上運動(dòng)時(shí)(除點(diǎn)A外),點(diǎn)P與定點(diǎn)A(—1,3)所確定的直線(xiàn)的斜率恒等于—2,體會(huì )“動(dòng)中有靜”的思維策略。
[設計意圖]
復習斜率公式;待定系數法;初步體會(huì )坐標法。同時(shí)引導學(xué)生注意為什么要把分式化簡(jiǎn)?(若不化簡(jiǎn),就少一點(diǎn)),感受數學(xué)簡(jiǎn)潔的美感和嚴謹性。還要指出這樣的事實(shí):當點(diǎn)P在直線(xiàn)l上運動(dòng)時(shí),P的坐標(x,y)滿(mǎn)足方程2x+y—1=0。反過(guò)來(lái),以方程2x+y—1=0的解為坐標的點(diǎn)在直線(xiàn)l上。把學(xué)生的思維引到用坐標法研究直線(xiàn)的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節。
。ǘ┥钊胩骄,獲得新知————點(diǎn)斜式
問(wèn)題三:
、偃糁本(xiàn)l經(jīng)過(guò)點(diǎn)P0(x0,y0),且斜率為k,求直線(xiàn)l的方程。
、谥本(xiàn)的點(diǎn)斜式方程能否表示經(jīng)過(guò)P0(x0,y0)的所有直線(xiàn)?
[學(xué)生活動(dòng)]
、賹W(xué)生敘述,老師板書(shū),強調斜率公式與點(diǎn)斜式的區別。
、谥笇W(xué)生用筆轉一轉不難發(fā)現,當直線(xiàn)l的傾斜角α=90°時(shí),斜率k不存在,當然不存在點(diǎn)斜式方程;討論k=0的情況;觀(guān)察并總結點(diǎn)斜式方程的特征。
[設計意圖]
由特殊到一般的學(xué)習思路,突破難點(diǎn),培養學(xué)生的歸納概括能力。通過(guò)對這個(gè)問(wèn)題的探究使學(xué)生獲得直線(xiàn)點(diǎn)斜式方程;由②知:當直線(xiàn)斜率k不存在時(shí),不能用點(diǎn)斜式方程表示直線(xiàn),培養思維的嚴謹性,這時(shí)直線(xiàn)l與y軸平行,它上面的每一點(diǎn)的橫坐標都等于x0,直線(xiàn)l的方程是:x=x0;通過(guò)學(xué)生的觀(guān)察討論總結,明確點(diǎn)斜式方程的形式特點(diǎn)和適用范圍,通過(guò)下面的例題和基礎練習,突破重難點(diǎn)。
問(wèn)題四:分別求經(jīng)過(guò)點(diǎn)且滿(mǎn)足下列條件的直線(xiàn)的方程(1)斜率;(2)傾斜角;(3)與軸平行;(4)與軸垂直。[練習]P95.1、2。
[學(xué)生活動(dòng)]
學(xué)生獨立完成并展示或敘述,老師點(diǎn)評。
[設計意圖]
充分用好教材的例題和習題,因為這些題都是專(zhuān)家精心編排的,充分體現必要性及合理性;做到及時(shí)反饋,便于反思本環(huán)節的教學(xué),指導下個(gè)環(huán)節的安排;突破重點(diǎn)內容后,進(jìn)入第三環(huán)節。
。ㄈ┩卣怪R,再獲新知————斜截式
問(wèn)題五:(1)一條直線(xiàn)與y軸交于點(diǎn)(0,3),直線(xiàn)的斜率為2,求這條直線(xiàn)的方程。(2)若直線(xiàn)l斜率為k,且與y軸的交點(diǎn)是P(0,b),求直線(xiàn)l的方程。
[學(xué)生活動(dòng)]
學(xué)生獨立完成后口述,教師板書(shū)。
[設計意圖]
由一般到特殊再到一般,培養學(xué)生的推理能力,同時(shí)引出截距的概念及斜截式方程,強調截距不是距離。類(lèi)比點(diǎn)斜式明確斜截式方程的形式特點(diǎn)和適用范圍及幾何意義,并討論其與一次函數的關(guān)系。通過(guò)下面的基礎練習,突破重點(diǎn)。
[練習]P95.3。
[設計意圖]
充分用好教材習題,及時(shí)反饋本環(huán)節的教學(xué)情況,指導下個(gè)環(huán)節的安排。
。ㄋ模┬〗Y引申,思維延續————兩點(diǎn)式
課堂小結
1、有哪些收獲?(點(diǎn)斜式方程:;斜截式方程:;求直線(xiàn)方程的方法:公式法、等斜率法、待定系數法。)
2、哪些地方還沒(méi)有學(xué)好?
問(wèn)題六:
。1)直線(xiàn)l過(guò)(1,0)點(diǎn),且與直線(xiàn)平行,求直線(xiàn)l的方程。
。2)直線(xiàn)l過(guò)點(diǎn)(2,—1)和點(diǎn)(3,—3),求直線(xiàn)l的方程。
[學(xué)生活動(dòng)]
學(xué)生獨立思考并嘗試自主完成,可以相互討論,探討解題思路。
[教師活動(dòng)]
教師深入學(xué)生中,與學(xué)生交流,了解學(xué)生思考問(wèn)題的進(jìn)展過(guò)程,有時(shí)間的話(huà),可以讓學(xué)生口述解題思路,也可以投影學(xué)生的證明過(guò)程,糾正出現的錯誤,規范書(shū)寫(xiě)的格式;沒(méi)時(shí)間就布置分層作業(yè)。
[設計意圖]
。1)小題與上一節的平行綜合,學(xué)生應該有思路求出方程;
。2)小題解決方法較多,預設有利用公式法、等斜率法、待定系數法,讓好一點(diǎn)的學(xué)生有一些發(fā)散思維的機會(huì ),以及課后學(xué)習的空間,使探究氣氛有一點(diǎn)高潮。另外也為下節課研究直線(xiàn)的兩點(diǎn)式方程作了重要的準備。分層作業(yè)必做題:P100。A組:1、(1)(2)(3)、5。選做題:P100。A組:1、(4)(5)(6)。
[設計意圖]
通過(guò)分層作業(yè),做到因材施教,使不同的學(xué)生在數學(xué)上得到不同的發(fā)展,讓每一個(gè)學(xué)生都得到符合自身實(shí)踐的感悟,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿(mǎn)的學(xué)習興趣,促進(jìn)學(xué)生自主發(fā)展。
四、教學(xué)特點(diǎn)分析
。ㄒ唬⿲(shí)例引導。
在字母運算、公式推導之前,總是用實(shí)例作為鋪墊,使學(xué)生有學(xué)習知識的可能和興趣,關(guān)注學(xué)困生的成長(cháng)與發(fā)展。
。ǘ﹩l(fā)式教學(xué)。
教學(xué)中總是以提問(wèn)的方式敘述所學(xué)內容,如:
1、直角坐標系內的所有直線(xiàn)都有點(diǎn)斜式方程嗎?
2、截距是距離嗎?它可以是負數嗎?
3、你會(huì )求直線(xiàn)在軸上的截距嗎?
4、觀(guān)察方程,它的形式具有什么特點(diǎn)?它與我們學(xué)過(guò)的一次函數有什么關(guān)系?等等。啟發(fā)學(xué)生的思維,作好與學(xué)生的對話(huà)與交流活動(dòng)。
。ㄈ┳⒅刈灾魈骄。設計問(wèn)題鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終。教師總是站在學(xué)生思維的最近發(fā)展區上,布設了由淺入深的學(xué)習環(huán)境突破重點(diǎn)、難點(diǎn),引導學(xué)生逐步發(fā)現知識的形成過(guò)程。設計了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題六的第(2)問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生創(chuàng )造充分的探究空間,學(xué)生在交流成果的過(guò)程中,高效的完成教學(xué)任務(wù)。
附:
板書(shū)設計
屏幕3.2直線(xiàn)的方程3.2.1直線(xiàn)的點(diǎn)斜式方程
問(wèn)題一:直線(xiàn)的方程
問(wèn)題二:實(shí)例引導
問(wèn)題三:直線(xiàn)的點(diǎn)斜式方程
問(wèn)題四:練習答案
問(wèn)題五:直線(xiàn)的斜截式方程截距
問(wèn)題六:實(shí)例引導,思維延續
高中數學(xué)說(shuō)課稿12
1.教材分析
1-1教學(xué)內容及包含的知識點(diǎn)
(1)本課內容是高中數學(xué)第二冊第七章第三節《兩條直線(xiàn)的位置關(guān)系》的最后一個(gè)內容
(2)包含知識點(diǎn):點(diǎn)到直線(xiàn)的距離公式和兩平行線(xiàn)的距離公式
1-2教材所處地位、作用和前后聯(lián)系
本節課是兩條直線(xiàn)位置關(guān)系的最后一個(gè)內容,在此之前,有對兩線(xiàn)位置關(guān)系的定性刻畫(huà):平行、垂直,以及對相交兩線(xiàn)的定量刻畫(huà):夾角、交點(diǎn)。在此之后,有圓錐曲線(xiàn)方程,因而本節既是對前面兩線(xiàn)垂直、兩線(xiàn)交點(diǎn)的復習,又是為后面計算點(diǎn)線(xiàn)距離(在直線(xiàn)和圓錐曲線(xiàn)構成的組合圖形中)提供一套工具。
可見(jiàn),本課有承前啟后的作用。
1-3教學(xué)大綱要求
掌握點(diǎn)到直線(xiàn)的距離公式
1-4高考大綱要求及在高考中的顯示形式
掌握點(diǎn)到直線(xiàn)的距離公式。在近年的高考中,通常以直線(xiàn)和圓錐曲線(xiàn)構成的組合圖形為背景,判斷直線(xiàn)和圓錐曲線(xiàn)的位置或構成三角形求高,涉及絕對值,直線(xiàn)垂直,最小值等。
1-5教學(xué)目標及確定依據
教學(xué)目標
(1)掌握點(diǎn)到直線(xiàn)的距離的概念、公式及公式的推導過(guò)程,能用公式來(lái)求點(diǎn)線(xiàn)距離和線(xiàn)線(xiàn)距離。
(2)培養學(xué)生探究性思維方法和由特殊到一般的研究能力。
(3)認識事物之間相互聯(lián)系、互相轉化的辯證法思想,培養學(xué)生轉化知識的能力。
(4)滲透人文精神,既注重學(xué)生的智慧獲得,又注重學(xué)生的情感發(fā)展。
確定依據:
中華人民共和國教育部制定的《全日制普通高級中學(xué)數學(xué)教學(xué)大綱》(20xx年4月第一版),《基礎教育課程改革綱要(試行)》,《高考考試說(shuō)明》(20xx年)
1-6教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵
。1)重點(diǎn):點(diǎn)到直線(xiàn)的距離公式
確定依據:由本節在教材中的地位確定
。2)難點(diǎn):點(diǎn)到直線(xiàn)的距離公式的推導
確定依據:根據定義進(jìn)行推導,思路自然,但運算繁瑣;用等積法推導,運算較簡(jiǎn)單,但思路不自然,學(xué)生易被動(dòng),主體性得不到體現。
分析“嘗試性題組”解題思路可突破難點(diǎn)
。3)關(guān)鍵:實(shí)現兩個(gè)轉化。一是將點(diǎn)線(xiàn)距離轉化為定點(diǎn)到垂足的距離;二是利用等積法將其轉化為直角三角形中三頂點(diǎn)的距離。
2.教法
2-1發(fā)現法:本節課為了培養學(xué)生探究性思維目標,在教學(xué)過(guò)程中,使老師的主導性和學(xué)生的主體性有機結合,使學(xué)生能夠愉快地自覺(jué)學(xué)習,通過(guò)學(xué)生自己練習“嘗試性題組”,引導、啟發(fā)學(xué)生分析、發(fā)現、比較、論證等,從而形成完整的數學(xué)模型。
確定依據:
(1)美國教育學(xué)家波利亞的教與學(xué)三原則:主動(dòng)學(xué)習原則,最佳動(dòng)機原則,階段漸進(jìn)性原則。
(2)事物之間相互聯(lián)系,相互轉化的辯證法思想。
2-2教具:多媒體和黑板等傳統教具
3.學(xué)法
3-1發(fā)現法:豐富學(xué)生的數學(xué)活動(dòng),學(xué)生經(jīng)過(guò)練習、觀(guān)察、分析、探索等步驟,自己發(fā)現解決問(wèn)題的方法,比較論證后得到一般性結論,形成完整的數學(xué)模型,再運用所得理論和方法去解決問(wèn)題。
一句話(huà):還課堂以生命力,還學(xué)生以活力。
3-2學(xué)情:
。1)知識能力狀況,本節為兩線(xiàn)位置關(guān)系的最后一個(gè)內容,在這之前學(xué)生已經(jīng)系統的`學(xué)習了直線(xiàn)方程的各種形式,有對兩線(xiàn)位置關(guān)系的定性認識和對兩線(xiàn)相交的定量認識,為本節推證公式涉及到直線(xiàn)方程、兩線(xiàn)垂直、兩線(xiàn)交點(diǎn)作好了知識儲備。同時(shí)學(xué)生對解析幾何的實(shí)質(zhì)中,用坐標系溝通直線(xiàn)與方程的研究辦法,有了初步認識,數形結合的思想正逐漸趨于成熟。
。2)心理特點(diǎn):又見(jiàn)“點(diǎn)到直線(xiàn)的距離”(初中已學(xué)習定義),學(xué)生既熟悉又陌生,既困惑又好奇,探詢(xún)動(dòng)機由此而生。
。3)生活經(jīng)驗:數學(xué)源于生活,生活中的點(diǎn)線(xiàn)距隨處可見(jiàn),怎樣將實(shí)際問(wèn)題數學(xué)化,是每個(gè)追求成長(cháng)、追求發(fā)展的學(xué)生所渴求的一種研究能力。豐富的課堂數學(xué)活動(dòng)能夠讓他們真正參與,體驗過(guò)程,錘煉意志,培養能力。
3-3學(xué)具:直尺、三角板
3. 教學(xué)程序
時(shí),此時(shí)又怎樣求點(diǎn)A到直線(xiàn)
的距離呢?
生: 定性回答
點(diǎn)明課題,使學(xué)生明確學(xué)習目標。
創(chuàng )設“不憤不啟,不悱不發(fā)”的學(xué)習情景。
練習
比較
發(fā)現
歸納
討論
的距離為d
(1) A(2,4),
。簒 = 3, d=_____
(2) A(2,4),
。簓 = 3,d=_____
(3) A(2,4),
。簒 – y = 0,d=_____
嘗試性題組告訴學(xué)生下手不難,還負責特例檢驗,從而增強學(xué)生參與的信心。
請三個(gè)同學(xué)上黑板板演
師: 請這三位同學(xué)分別說(shuō)說(shuō)自己的解題思路。
生: 回答
教學(xué)機智:應沉淀為三種思路:一,根據定義轉化為定點(diǎn)到垂足的距離;二,利用等積法轉化為直角三角形中三個(gè)頂點(diǎn)之間的距離;三,利用直角三角形中的邊角關(guān)系。
視回答的情況,老師進(jìn)行肯定、修正或補充提問(wèn):“還有其他不同的思路嗎”。
說(shuō)解題思路,一是讓學(xué)生清晰有條理的表達自己的思考過(guò)程,二是其求解過(guò)程提示了證明的途徑(根據定義或畫(huà)坐標線(xiàn)時(shí)正好交出一個(gè)直角三角形)
師:很好,剛才我們解決了定點(diǎn)到特殊直線(xiàn)的距離問(wèn)題,那么,點(diǎn)P(x0,y0)到一般直線(xiàn)
。篈x+By+C=0(A,B≠0)的距離又怎樣求?
教學(xué)機智:如學(xué)生反應不大,則補充提問(wèn):上面三個(gè)題的解題思路對這個(gè)問(wèn)題有啟示嗎?
生:方案一:根據定義
方案二:根據等積法
方案三: ......
設置此問(wèn),一是使學(xué)生的認知由特殊向一般轉化,發(fā)現可能的方法,二是讓學(xué)生體驗數學(xué)活動(dòng)充滿(mǎn)著(zhù)探索和創(chuàng )造,感受數學(xué)的生機和樂(lè )趣。
師生一起進(jìn)行比較,鎖定方案二進(jìn)行推證。
“師生共作”體現新型師生觀(guān),且//時(shí),又怎樣求這兩線(xiàn)的距離?
生:計算得線(xiàn)線(xiàn)距離公式
師:板書(shū)點(diǎn)到直線(xiàn)的距離公式,兩平行線(xiàn)間距離公式
“沒(méi)有新知識,新知識均是舊知識的組合”,創(chuàng )設此問(wèn)可發(fā)揮學(xué)生的創(chuàng )造性,增加學(xué)生的成就感。
反思小結
經(jīng)驗共享
。 分 鐘)
師: 通過(guò)以上的學(xué)習,你有哪些收獲?(知識,能力,情感)。有哪些疑問(wèn)?誰(shuí)能答這些疑問(wèn)?
生: 討論,回答。
對本節課用到的技能,數學(xué)思維方法等進(jìn)行小結,使學(xué)生對本節知識有一個(gè)整體的認識。
共同進(jìn)步,各取所長(cháng)。
練習
。ㄎ 分 鐘)
P53 練習 1, 2,3
熟練的用公式來(lái)求點(diǎn)線(xiàn)距離和線(xiàn)線(xiàn)距離。
再度延伸
。ㄒ 分 鐘)
探索其他推導方法
“帶著(zhù)問(wèn)題進(jìn)課堂,帶著(zhù)更多的問(wèn)題出課堂”,讓學(xué)生真正學(xué)會(huì )學(xué)習。
4. 教學(xué)評價(jià)
學(xué)生完成反思性學(xué)習報告,書(shū)寫(xiě)要求:
(1) 整理知識結構
(2) 總結所學(xué)到的基本知識,技能和數學(xué)思想方法
(3) 總結在學(xué)習過(guò)程中的經(jīng)驗,發(fā)明發(fā)現,學(xué)習障礙等,說(shuō)明產(chǎn)生障礙的原因
(4) 談?wù)勀銓蠋熃谭ǖ慕ㄗh和要求。
作用:
(1) 通過(guò)反思使學(xué)生對所學(xué)知識系統化。反思的過(guò)程實(shí)際上是學(xué)生思維內化,知識深化和認知牢固化的一個(gè)心理活動(dòng)過(guò)程。
(2) 報告的寫(xiě)作本身就是一種創(chuàng )造性活動(dòng)。
(3) 及時(shí)了解學(xué)生學(xué)習過(guò)程中的知識缺陷,思維障礙,有利于教師了解學(xué)生對自己的教法的滿(mǎn)意度和效果,以便作出及時(shí)調整,及時(shí)進(jìn)行補償性教學(xué)。
5. 板書(shū)設計
(略)
6. 教學(xué)的反思總結
心理歷練,得意之處,困惑之處,知識的傳承發(fā)展,如何修正完善等。
高中數學(xué)說(shuō)課稿13
大家好,今天我向大家說(shuō)課的題目是《正弦定理》。下面我將從以下幾個(gè)方面介紹我這堂課的教學(xué)設計。
一、教材分析
本節知識是必修五第一章《解三角形》的第一節內容,與初中學(xué)習的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,而且解三角形和三角函數聯(lián)系在高考當中也時(shí)?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。
根據上述教材內容分析,考慮到學(xué)生已有的認知結構心理特征及原有知識水平,制定如下教學(xué)目標:
認知目標:通過(guò)創(chuàng )設問(wèn)題情境,引導學(xué)生發(fā)現正弦定理的內容,掌握正弦定理的內容及其證明方法,使學(xué)生會(huì )運用正弦定理解決兩類(lèi)基本的解三角形問(wèn)題。
能力目標:引導學(xué)生通過(guò)觀(guān)察,推導,比較,由特殊到一般歸納出正弦定理,培養學(xué)生的創(chuàng )新意識和觀(guān)察與邏輯思維能力,能體會(huì )用向量作為數形結合的工具,將幾何問(wèn)題轉化為代數問(wèn)題。
情感目標:面向全體學(xué)生,創(chuàng )造平等的教學(xué)氛圍,通過(guò)學(xué)生之間、師生之間的交流、合作和評價(jià),調動(dòng)學(xué)生的.主動(dòng)性和積極性,激發(fā)學(xué)生學(xué)習的興趣。
教學(xué)重點(diǎn):正弦定理的內容,正弦定理的證明及基本應用。 教學(xué)難點(diǎn):已知兩邊和其中一邊的對角解三角形時(shí)判斷解的個(gè)數。
二、教法
根據教材的內容和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認識規律,本講遵照以教師為主導,以學(xué)生為主體,訓練為主線(xiàn)的指導思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過(guò)程中,在教師的啟發(fā)引導下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現”為基本探究?jì)热,以生活?shí)際為參照對象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。
三、學(xué)法
指導學(xué)生掌握“觀(guān)察——猜想——證明——應用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識應用于對任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習,觀(guān)察,類(lèi)比,思考,探究,概括,動(dòng)手嘗試相結合,體現學(xué)生的主體地位,增強學(xué)生由特殊到一般的數學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。
四、教學(xué)過(guò)程
(一)創(chuàng )設情境(3分鐘)
“興趣是最好的老師”,如果一節課有個(gè)好的開(kāi)頭,那就意味著(zhù)成功了一半,本節課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(cháng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(cháng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習的興趣,從而進(jìn)入今天的學(xué)習課題。
(二)猜想—推理—證明(15分鐘)
激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現正弦定理。 提問(wèn):那結論對任意三角形都適用嗎?(讓學(xué)生分小組討論,并得出猜想)
在三角形中,角與所對的邊滿(mǎn)足關(guān)系
注意:1.強調將猜想轉化為定理,需要嚴格的理論證明。
2.鼓勵學(xué)生通過(guò)作高轉化為熟悉的直角三角形進(jìn)行證明。
3.提示學(xué)生思考哪些知識能把長(cháng)度和三角函數聯(lián)系起來(lái),繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學(xué)思想。
(三)總結--應用(3分鐘)
1.正弦定理的內容,討論可以解決哪幾類(lèi)有關(guān)三角形的問(wèn)題。
2.運用正弦定理求解本節課引入的三角形零件邊長(cháng)的問(wèn)題。自己參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀(guān)。
(四)講解例題(8分鐘)
1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1簡(jiǎn)單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來(lái)解三角形。
2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中
一邊的對角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。
(五)課堂練習(8分鐘)
1.在△ABC中,已知下列條件,解三角形. (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm
2. 在△ABC中,已知下列條件,解三角形. (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°
學(xué)生板演,老師巡視,及時(shí)發(fā)現問(wèn)題,并解答。
(六)小結反思(3分鐘)
1.它表述了三角形的邊與對角的正弦值的關(guān)系。
2.定理證明分別從直角、銳角、鈍角出發(fā),運用分類(lèi)討論的思想。
3.會(huì )用向量作為數形結合的工具,將幾何問(wèn)題轉化為代數問(wèn)題。
五、教學(xué)反思
從實(shí)際問(wèn)題出發(fā),通過(guò)猜想、實(shí)驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問(wèn)題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著(zhù)結論,而且整個(gè)探索過(guò)程我們也掌握了研究問(wèn)題的一般方法。在強調研究性學(xué)習方法,注重學(xué)生的主體地位,調動(dòng)學(xué)生積極性,使數學(xué)教學(xué)成為數學(xué)活動(dòng)的教學(xué)。
高中數學(xué)說(shuō)課稿14
一、教材分析
本節是人教A版高中數學(xué)必修三第二章《統計》中的第三節 “變量間的相關(guān)關(guān)系” 的第二課時(shí)。在上一課時(shí),學(xué)生已經(jīng)懂得根據兩個(gè)相關(guān)變量的數據作出散點(diǎn)圖,并利用散點(diǎn)圖直觀(guān)認識變量間的相關(guān)關(guān)系。這節課是在上一節課的基礎上介紹了用線(xiàn)性回歸的方法研究?jì)蓚(gè)變量的相關(guān)性和最小二乘法的思想。
從全章的內容上看,線(xiàn)性回歸方程的建立不僅是本節的難點(diǎn),也是本章內容的難點(diǎn)之一。線(xiàn)性回歸是最簡(jiǎn)單的回歸分析,學(xué)好回歸分析是學(xué)好統計學(xué)的重要基礎。
二、教學(xué)目標
根據課標的要求及前面的分析,結合高二學(xué)生的認知特點(diǎn)確定本節課的教學(xué)目標如下:
知識與技能:
1. 知道最小二乘法和回歸分析的思想;
2. 能根據線(xiàn)性回歸方程系數公式求出回歸方程
過(guò)程與方法:
經(jīng)歷線(xiàn)性回歸分析過(guò)程,借助圖形計算器得出回歸直線(xiàn),增強數學(xué)應用和使用技術(shù)的意識。
情感態(tài)度與價(jià)值觀(guān)
通過(guò)合作學(xué)習,養成傾聽(tīng)別人意見(jiàn)和建議的良好品質(zhì)
三、重點(diǎn)難點(diǎn)分析:
根據目標分析,確定教學(xué)重點(diǎn)和難點(diǎn)如下:
教學(xué)重點(diǎn):
1. 知道最小二乘法和回歸分析的思想;
2.會(huì )求回歸直線(xiàn)
教學(xué)難點(diǎn):
建立回歸思想,會(huì )求回歸直線(xiàn)
四、教學(xué)設計
提出問(wèn)題
理論探究
驗證結論
小結提升
應用實(shí)踐
作業(yè)設計
教學(xué)環(huán)節
內容及說(shuō)明
創(chuàng )設情境
探究:在一次對人體脂肪含量和年齡關(guān)系的研究中,研究人員獲得了一組樣本數據:
問(wèn)題與引導設計
師生活動(dòng)
設計意圖
問(wèn)題1. 利用圖形計算器作出散點(diǎn)圖,并指出上面的兩個(gè)變量是正相關(guān)還是負相關(guān)?
教師提問(wèn),學(xué)生
通過(guò)動(dòng)手操作得
出散點(diǎn)圖并回答
以舊“探”新:對舊的知識進(jìn)行簡(jiǎn)要的提問(wèn)復習,為本節課學(xué)生能夠更好的建構新的知識做好充分的準備;尤其為一些后進(jìn)生能夠順利的完成本節課的內容提供必要的基礎。
教師引導:通過(guò)上節課的學(xué)習,我們知道散點(diǎn)圖是研究?jì)蓚(gè)變量相關(guān)關(guān)系的一種重要手段。下面,請同學(xué)們根據得出的散點(diǎn)圖,思考下面的問(wèn)題2.
問(wèn)題2. 甲同學(xué)判斷某人年齡在65歲時(shí)體內脂肪含量百分比可能為34,乙同學(xué)判斷可能為25,而丙同學(xué)則判斷可能為37,你對甲,
乙,丙三個(gè)同學(xué)的判斷有什么看法?
學(xué)生能夠表達自己的看法。有的學(xué)生可能會(huì )認為乙同學(xué)的判斷是錯誤的;有的學(xué)生可能認為甲乙丙三個(gè)同學(xué)的判斷都是對的,答案不唯一
該問(wèn)題具有探究性、啟發(fā)性和開(kāi)放性。鼓勵學(xué)生大膽表達自己的看法。通過(guò)設計該問(wèn)題,引導學(xué)生自己發(fā)現問(wèn)題,注意到散點(diǎn)圖中點(diǎn)的分布具有一定規律,體會(huì )觀(guān)測點(diǎn)與回歸直線(xiàn)的關(guān)系;進(jìn)而引起學(xué)生的對本節課內容的興趣。
問(wèn)題3. 反思問(wèn)題,你還可以提出哪些問(wèn)題嗎?小組討論,看哪個(gè)小組提出的.問(wèn)題多
在小組討論的形式下和比較哪個(gè)小組提出的問(wèn)題多,學(xué)生之間會(huì )充分的進(jìn)行交流,提出問(wèn)題
通過(guò)小組討論比較,調動(dòng)學(xué)生的學(xué)習積極性和興趣,活躍課堂氣氛,達到學(xué)生自己提出問(wèn)題的效果,培養學(xué)生的學(xué)生創(chuàng )新思維和問(wèn)題意識。
學(xué)生可能提出的問(wèn)題:
、贋槭裁醇、丙同學(xué)的判斷結果正確的可能性較大,而乙同學(xué)判斷結果正確的可能性較?
、谀橙四挲g在65歲時(shí)體內脂肪含量百分比最可能是多少?在其它年齡時(shí)呢?
、圻@些樣本數據揭示出兩個(gè)相關(guān)變量之間怎樣的關(guān)系呢?
、茉鯓佑脭祵W(xué)的方法研究變量之間的相關(guān)關(guān)系呢?每個(gè)問(wèn)題都是學(xué)生“火熱的思考”成果
高中數學(xué)說(shuō)課稿15
一、教材分析:
1.教材所處的地位和作用:
本節內容在全書(shū)和章節中的作用是:《1.3.1柱體、錐體、臺體的表面積》是高中數學(xué)教材數學(xué)2第一章空間幾何體3節內容。在此之前學(xué)生已學(xué)習了空間幾何體的結構、三視圖和直觀(guān)圖為基礎,這為過(guò)渡到本節的學(xué)習起著(zhù)鋪墊作用。本節內容是在空間幾何中,占據重要的地位。以及為其他學(xué)科和今后的學(xué)習打下基礎。
2.教育教學(xué)目標:
根據上述教材分析,考慮到學(xué)生已有的認知結構心理特征,制定如下教學(xué)目標:
知識與能力:
。1)了解柱體、錐體、臺體的表面積.
。2)能用公式求柱體、錐體、臺體的表面積。
。3)培養學(xué)生空間想象能力和思維能力
過(guò)程與方法:
讓學(xué)生經(jīng)歷幾何體的表面積的實(shí)際求法,感知幾何體的形狀,培養學(xué)生對數學(xué)問(wèn)題的轉化化歸能力。
情感、態(tài)度與價(jià)值觀(guān):
通過(guò)學(xué)習,是學(xué)生感受到幾何體表面積的求解過(guò)程,激發(fā)學(xué)生探索、創(chuàng )新意識,增強學(xué)習積極性。
3.重點(diǎn),難點(diǎn)以及確定依據:
本著(zhù)新課程標準,在吃透教材基礎上,我確立了如下的教學(xué)重點(diǎn)、難點(diǎn)
教學(xué)重點(diǎn):柱,錐,臺的表面積公式的推導
教學(xué)難點(diǎn):柱,錐,臺展開(kāi)圖與空間幾何體的轉化
二、教法分析
1.教學(xué)手段:
如何突出重點(diǎn),突破難點(diǎn),從而實(shí)現教學(xué)目標。在教學(xué)過(guò)程中擬計劃進(jìn)行如下操作:教學(xué)方法;诒竟澱n的特點(diǎn):應著(zhù)重采用合作探究、小組討論的教學(xué)方法。
2.教學(xué)方法及其理論依據:堅持“以學(xué)生為主體,以教師為主導”的原則,根據學(xué)生的心理發(fā)展規律,采用學(xué)生參與程度高的探究式討論教學(xué)法。在學(xué)生親自動(dòng)手去給出各種幾何體的表面積的計算方法,特別注重不同解決問(wèn)題的方法,提問(wèn)不同層次的學(xué)生,面向全體,使基礎差的學(xué)生也能有表現機會(huì ),培養其自信心,激發(fā)其學(xué)習熱情。有效的.開(kāi)發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎上得到發(fā)展。啟發(fā)學(xué)生從書(shū)本知識回到社會(huì )實(shí)踐。提供給學(xué)生與其生活和周?chē)澜缑芮邢嚓P(guān)的數學(xué)知識,學(xué)習基礎性的知識和技能,在教學(xué)中積極培養學(xué)生學(xué)習興趣和動(dòng)機,明確的學(xué)習目的,老師應在課堂上充分調動(dòng)學(xué)生的學(xué)習積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力。
三.學(xué)情分析
我們常說(shuō):“現代的文盲不是不識字的人,而是沒(méi)有掌握學(xué)習方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導。
。1)學(xué)生特點(diǎn)分析:中學(xué)生心理學(xué)研究指出,高中階段是(查同中學(xué)生心發(fā)展情況)抓住學(xué)生特點(diǎn),積極采用形象生動(dòng),形式多樣的教學(xué)方法和學(xué)生廣泛的積極主動(dòng)參與的學(xué)習方式,定能激發(fā)學(xué)生興趣,有效地培養學(xué)生能力,促進(jìn)學(xué)生個(gè)性發(fā)展。生理上表少年好動(dòng),注意力易分散
。2)動(dòng)機和興趣上:明確的學(xué)習目的,老師應在課堂上充分調動(dòng)學(xué)生的學(xué)習積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力
最后我來(lái)具體談?wù)勥@一堂課的教學(xué)過(guò)程:
四、教學(xué)過(guò)程分析
。1)由一段動(dòng)畫(huà)視頻引入:豐富生動(dòng)的吸引學(xué)生的注意力,調動(dòng)學(xué)生學(xué)習積極性
。2)由引入得出本課新的所要探討的問(wèn)題——幾何體的表面積的計算。
。3)探究問(wèn)題。完全將主動(dòng)權教給學(xué)生,讓學(xué)生主動(dòng)去探究,得到解決問(wèn)題的思路,鍛煉學(xué)生動(dòng)手能力,解決實(shí)際問(wèn)題能力。
。4)總結結論,強化認識。知識性的內容小結,可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì),數學(xué)思想方法的小結,可使學(xué)生更深刻地理解數學(xué)思想方法在解題中的地位和應用,并且逐步培養學(xué)生良好的個(gè)性品質(zhì)目標。
。5)例題及練習,見(jiàn)學(xué)案。
。6)布置作業(yè)。
針對學(xué)生素質(zhì)的差異進(jìn)行分層訓練,既使學(xué)生掌握基礎知識,又使學(xué)有余力的學(xué)生有所提高,
。7)小結。讓學(xué)生總結本節課的收獲。老師適時(shí)總結歸納。
【高中數學(xué)說(shuō)課稿】相關(guān)文章:
高中數學(xué)經(jīng)典說(shuō)課稿03-12
高中數學(xué)的說(shuō)課稿06-13
高中數學(xué)說(shuō)課稿11-14
高中數學(xué)說(shuō)課稿06-25
高中數學(xué)說(shuō)課稿06-12