高中數學(xué)說(shuō)課稿(15篇)
作為一名人民教師,時(shí)常會(huì )需要準備好說(shuō)課稿,說(shuō)課稿有助于順利而有效地開(kāi)展教學(xué)活動(dòng)。怎樣寫(xiě)說(shuō)課稿才更能起到其作用呢?以下是小編為大家收集的高中數學(xué)說(shuō)課稿,僅供參考,大家一起來(lái)看看吧。
高中數學(xué)說(shuō)課稿1
【教材分析】
1、本節教材的地位與作用
本節主要研究閉區間上的連續函數最大值和最小值的求法和實(shí)際應用,分兩課時(shí),這里是第一課時(shí),它是在學(xué)生已經(jīng)會(huì )求某些函數的最值,并且已經(jīng)掌握了性質(zhì):“如果f(x)是閉區間[a,b]上的連續函數,那么f(x)在閉區間[a,b]上有最大值和最小值”,以及會(huì )求可導函數的極值之后進(jìn)行學(xué)習的,學(xué)好這一節,學(xué)生將會(huì )求更多的函數的最值,運用本節知識可以解決科技、經(jīng)濟、社會(huì )中的一些如何使成本最低、產(chǎn)量最高、效益最大等實(shí)際問(wèn)題。這節課集中體現了數形結合、理論聯(lián)系實(shí)際等重要的數學(xué)思想方法,學(xué)好本節,對于進(jìn)一步完善學(xué)生的知識結構,培養學(xué)生用數學(xué)的意識都具有極為重要的意義。
2、教學(xué)重點(diǎn)
會(huì )求閉區間上連續開(kāi)區間上可導的函數的最值。
3、教學(xué)難點(diǎn)
高三年級學(xué)生雖然已經(jīng)具有一定的知識基礎,但由于對求函數極值還不熟練,特別是對優(yōu)化解題過(guò)程依據的理解會(huì )有較大的困難,所以這節課的難點(diǎn)是理解確定函數最值的方法。
4、教學(xué)關(guān)鍵
本節課突破難點(diǎn)的關(guān)鍵是:理解方程f′(x)=0的解,包含有指定區間內全部可能的極值點(diǎn)。
【教學(xué)目標】
根據本節教材在高中數學(xué)知識體系中的地位和作用,結合學(xué)生已有的認知水平,制定本節如下的教學(xué)目標:
1、知識和技能目標
。1)理解函數的最值與極值的區別和聯(lián)系。
。2)進(jìn)一步明確閉區間[a,b]上的連續函數f(x),在[a,b]上必有最大、最小值。
。3)掌握用導數法求上述函數的最大值與最小值的方法和步驟。
2、過(guò)程和方法目標
。1)了解開(kāi)區間內的連續函數或閉區間上的不連續函數不一定有最大、最小值。
。2)理解閉區間上的連續函數最值存在的可能位置:極值點(diǎn)處或區間端點(diǎn)處。
。3)會(huì )求閉區間上連續,開(kāi)區間內可導的函數的最大、最小值。
3、情感和價(jià)值目標
。1)認識事物之間的的區別和聯(lián)系。
。2)培養學(xué)生觀(guān)察事物的能力,能夠自己發(fā)現問(wèn)題,分析問(wèn)題并最終解決問(wèn)題。
。3)提高學(xué)生的數學(xué)能力,培養學(xué)生的創(chuàng )新精神、實(shí)踐能力和理性精神。
【教法選擇】
根據皮亞杰的建構主義認識論,知識是個(gè)體在與環(huán)境相互作用的過(guò)程中逐漸建構的結果,而認識則是起源于主客體之間的相互作用。
本節課在幫助學(xué)生回顧肯定了閉區間上的連續函數一定存在最大值和最小值之后,引導學(xué)生通過(guò)觀(guān)察閉區間內的'連續函數的幾個(gè)圖象,自己歸納、總結出函數最大值、最小值存在的可能位置,進(jìn)而探索出函數最大值、最小值求解的方法與步驟,并優(yōu)化解題過(guò)程,讓學(xué)生主動(dòng)地獲得知識,老師只是進(jìn)行適當的引導,而不進(jìn)行全部的灌輸。為突出重點(diǎn),突破難點(diǎn),這節課主要選擇以合作探究式教學(xué)法組織教學(xué)。
【學(xué)法指導】
對于求函數的最值,高三學(xué)生已經(jīng)具備了良好的知識基礎,剩下的問(wèn)題就是有沒(méi)有一種更一般的方法,能運用于更多更復雜函數的求最值問(wèn)題?教學(xué)設計中注意激發(fā)起學(xué)生強烈的求知欲望,使得他們能積極主動(dòng)地觀(guān)察、分析、歸納,以形成認識,參與到課堂活動(dòng)中,充分發(fā)揮他們作為認知主體的作用。
【教學(xué)過(guò)程】
本節課的教學(xué),大致按照“創(chuàng )設情境,鋪墊導入——合作學(xué)習,探索新知——指導應用,鼓勵創(chuàng )新——歸納小結,反饋回授”四個(gè)環(huán)節進(jìn)行組織。
高中數學(xué)說(shuō)課稿2
教學(xué)指導思想:新的教學(xué)理念下課堂教學(xué)已經(jīng)是一個(gè)多維度多中心的整體。教師學(xué)生都是參與課堂的主體,而教學(xué)設計與實(shí)驗則是課堂的載體,它將調度師生共同參與教學(xué)活動(dòng),并在參與中盡量獲取知識與能力上的探討,共鳴與思維能力的升華與內化。教學(xué)應該揭示事物發(fā)展規律的呈現,注重學(xué)生把數學(xué)問(wèn)題取之生活,用之生活。 本案將從現實(shí)中提取生活素材,引導學(xué)生在生活去發(fā)現問(wèn)題,提煉猜想歸納,分析解決,得出事物或者問(wèn)題發(fā)展規律;在此過(guò)程中學(xué)生得到的是自身發(fā)現能力的挖掘,建構模型的開(kāi)發(fā),問(wèn)題解決能力的提高以及綜合創(chuàng )新與創(chuàng )造力的潛能訓練,這將有利于學(xué)生的素質(zhì)和終身學(xué)習能力的培養。
一、教材分析
1、教材的地位和作用
算術(shù)平均數與幾何平均數是不等式這一章的核心,對于不等式的證明及利用均值不等式求最值等應用問(wèn)題都起到工具性作用。通過(guò)本章的學(xué)習有利于學(xué)生對后面不等式的證明及前面函數的一些最值值域進(jìn)一步研究,起到承前啟后的作用。
2、教學(xué)內容
本節課的主要教學(xué)內容是通過(guò)現實(shí)問(wèn)題進(jìn)行數學(xué)實(shí)驗猜想,構造數學(xué)模型,得到均值不等式;并通過(guò)在學(xué)習算術(shù)平均數與幾何平均數的定義基礎上,理解均值不等式的幾何解釋?zhuān)慌c此同時(shí)在推理論證的基礎上學(xué)會(huì )應用。
3、教學(xué)目標
教學(xué)目標是基于對教材,教學(xué)大綱和學(xué)生學(xué)情的分析相應制定的。在新課程理念的指導下,更為關(guān)注學(xué)生的合作交流能力的培養,關(guān)注學(xué)生探究問(wèn)題的習慣和意識的培養。因此,結合本節課內容與實(shí)驗,設計本節課教學(xué)目標如下:
知識與技能:對于算術(shù)平均數與幾何平均數的理解以及定理的掌握;
過(guò)程與方法:通過(guò)情景設置提出問(wèn)題,揭示課題,培養學(xué)生主動(dòng)探究新知的習慣;引導學(xué)生通過(guò)問(wèn)題設計,模型轉化,類(lèi)比猜想實(shí)現定理的發(fā)現,體驗知識與規律的形成過(guò)程;通過(guò)模型對比,多個(gè)角度,多種方法求解,拓寬學(xué)生的思路,優(yōu)化學(xué)生的思維方式,提高學(xué)生綜合創(chuàng )新與創(chuàng )造能力。
情感態(tài)度價(jià)值觀(guān): 培養學(xué)生生活問(wèn)題數學(xué)化,并注重運用數學(xué)解決生活中實(shí)際問(wèn)題的習慣,有利于數學(xué)生活化,大眾化;同時(shí)通過(guò)學(xué)生自身的探索研究領(lǐng)略獲取新知的喜悅。
教學(xué)重點(diǎn): 算術(shù)平均數與幾何平均數的理解以及定理的掌握;
教學(xué)難點(diǎn):算術(shù)平均數與幾何平均數以及定理發(fā)現探索過(guò)程的構建及應用;
教學(xué)關(guān)鍵:學(xué)生對于實(shí)驗的實(shí)踐及函數模型的構建。
教學(xué)模式:探究式 合作式
二、學(xué)情分析
學(xué)生已經(jīng)掌握了不等式的基本性質(zhì),高中的學(xué)生已經(jīng)具有較好的邏輯思維能力,因此他們希望能夠自己探索,發(fā)現問(wèn)題和解決問(wèn)題,F在經(jīng)歷課改的學(xué)生不僅僅停留在接受學(xué)習的框框內,他們更需要充滿(mǎn)活力與創(chuàng )造發(fā)現的課堂。課堂實(shí)驗可能存在問(wèn)題:對EXEL軟件不夠熟練。對于模型構造思路不夠清晰。
三、教法分析
不同于傳統的講授課,基于數學(xué)實(shí)驗的教學(xué)實(shí)踐課,教師的教應有瞻前性,應該在實(shí)驗課前讓學(xué)生對于軟件的應用有充分的準備,并進(jìn)行分組討論得到數學(xué)模型。依據前蘇聯(lián)教育家贊可夫"問(wèn)題教學(xué)法"確定本堂課所采用的教學(xué)方法是"生活中發(fā)現問(wèn)題,實(shí)驗中分析問(wèn)題,設計中解決問(wèn)題,總結問(wèn)題,論證后延拓問(wèn)題"五環(huán)節教學(xué)方法,運用這種教學(xué)方法能更好地使學(xué)生經(jīng)歷實(shí)驗的發(fā)生,發(fā)展和"再創(chuàng )造"的全過(guò)程,主動(dòng)地吸收新知識的精髓。
四、學(xué)法指導
新的教學(xué)理念下課堂教學(xué)已經(jīng)是一個(gè)多維度多中心的整體。教師學(xué)生都是參與課堂的主體,而教學(xué)設計與實(shí)驗則是課堂的載體,它將調度師生共同參與教學(xué)活動(dòng),并在參與中盡量獲取知識與能力上的探討,共鳴與思維能力的升華與內化。教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì )學(xué)是目的。因此,在教學(xué)中要不斷指導學(xué)生學(xué)會(huì )學(xué)習。根據數學(xué)實(shí)驗課的教學(xué)特點(diǎn),這節課主要是教給學(xué)生"動(dòng)手做,動(dòng)腦想;多訓練,多實(shí)踐。"的研討式學(xué)習方法。這樣做,增加了學(xué)生主動(dòng)參與的機會(huì ),增強了參與意識,教給學(xué)生獲取知識的途徑,思考問(wèn)題的方法,使學(xué)生真正成為教學(xué)的主體。通過(guò)這樣使學(xué)生"學(xué)"有新"思","思"有所"得","練"有所"獲"。學(xué)生才會(huì )學(xué)習數學(xué)中體驗發(fā)現的成就感,從而提高學(xué)生學(xué)習數學(xué)的`興趣;在此過(guò)程中,學(xué)生學(xué)會(huì )了交流合作,并學(xué)以致用,才能適應素質(zhì)教育下培養"創(chuàng )新型"人才的需要。
五、實(shí)驗內容與實(shí)驗程序:
問(wèn)題:元旦晚會(huì )我們學(xué)校即將舉行游園活動(dòng),每個(gè)班級有一條20米長(cháng)的紅絲帶在燈光球場(chǎng)圍成一矩形的場(chǎng)地活動(dòng),請問(wèn)大家應該怎么圍才能使我們班級的場(chǎng)地面積最大
1問(wèn)題提煉:(用數學(xué)語(yǔ)言表達)
2實(shí)驗步驟:
A 請根據題目要求選擇整數長(cháng)度為邊,按照制圖方法繪制5個(gè)矩形,并比較面積
B 把上面的矩形按照邊長(cháng)與面積的不同列表歸納
長(cháng)度(m)
寬度 (m)
面積 ()
C 根據以上表格數據,請用exel軟件作出柱狀圖,并思考以下問(wèn)題:
。1)在邊長(cháng)變化過(guò)程中,面積的大小變化情況與趨勢
。2)由這種趨勢請同學(xué)們自己猜想總結一個(gè)結論。
3 實(shí)驗的感言與進(jìn)一步構造數學(xué)模型的思考。
六、教學(xué)流程
1,生活問(wèn)題創(chuàng )設情景:通過(guò)生活問(wèn)題設置情景并構建實(shí)驗
2,構建模型解決問(wèn)題:學(xué)生通過(guò)合作討論構建函數及不等式解決問(wèn)題并發(fā)現均值不等式
3,定理總結結論表述:用數學(xué)語(yǔ)言表達均值不等式并用文字語(yǔ)言總結陳述
4,定理論證課堂練習:用幾何與代數方法分別論證結論并進(jìn)行課堂練習
5,學(xué)習感言教學(xué)小結:由學(xué)生發(fā)表學(xué)習感言,老師總結本堂課的學(xué)習過(guò)程與學(xué)習方法。學(xué)習過(guò)程:發(fā)現問(wèn)題――實(shí)驗猜想――構建模型――發(fā)現規律――論證再運用;學(xué)習方法:協(xié)作探討,自主實(shí)驗,猜想證明,發(fā)現應用。
七、教學(xué)反饋評價(jià)
本節課利用生活問(wèn)題設計數學(xué)實(shí)驗,是現階段新課程改革的新試點(diǎn),是學(xué)生進(jìn)行數學(xué)研究性學(xué)習與自主學(xué)習的一重要手段與途徑。
本節課通過(guò)生活問(wèn)題的合作交流探討,學(xué)生學(xué)習方式有了新的改變;在實(shí)驗的構造過(guò)程,學(xué)生的自主性,實(shí)踐性,創(chuàng )造性得到鍛煉與提高;在實(shí)驗過(guò)程中學(xué)生的分工合作精神更是得到充分的考驗與體現,學(xué)生學(xué)會(huì )了合作與分享;通過(guò)對數學(xué)模型的構建,學(xué)生更加體會(huì )進(jìn)行自主研究,合作學(xué)習的樂(lè )趣,同時(shí)培養了學(xué)生創(chuàng )新精神與發(fā)現能力。
當然本節課的一個(gè)突出點(diǎn)在于從書(shū)本某一個(gè)知識作為切入點(diǎn)構造生活問(wèn)題,設計數學(xué)實(shí)驗,創(chuàng )造性地對教材進(jìn)行再利用,再編改。使得學(xué)生在課堂,課外自主學(xué)習與接受知識的方法途徑更加多樣,參與課堂的方式更加深入,更容易通過(guò)自己探究體驗發(fā)現的樂(lè )趣。這是傳統教學(xué)所沒(méi)辦法達到的。
高中數學(xué)說(shuō)課稿3
一、教材地位與作用
本節知識是必修五第一章《解三角形》的第一節內容,與初中學(xué)習的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,而且解三角形和三角函數聯(lián)系在高考當中也時(shí)?家恍┙獯痤}。因此,正弦定理的知識非常重要。
二、學(xué)情分析
作為高一學(xué)生,同學(xué)們已經(jīng)掌握了基本的三角函數,特別是在一些特殊三角形中,而學(xué)生們在解決任意三角形的邊與角問(wèn)題,就比較困難。
教學(xué)重點(diǎn):正弦定理的內容,正弦定理的證明及基本應用。
教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時(shí)判斷解的個(gè)數。
根據我的教學(xué)內容與學(xué)情分析以及教學(xué)重難點(diǎn),我制定了如下幾點(diǎn)教學(xué)目標
教學(xué)目標分析:
知識目標:理解并掌握正弦定理的'證明,運用正弦定理解三角形。
能力目標:探索正弦定理的證明過(guò)程,用歸納法得出結論。
情感目標:通過(guò)推導得出正弦定理,讓學(xué)生感受數學(xué)公式的整潔對稱(chēng)美和數學(xué)的實(shí)際應用價(jià)值。
三、教法學(xué)法分析
教法:采用探究式課堂教學(xué)模式,在教師的啟發(fā)引導下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現”為基本探究?jì)热,以生活?shí)際為參照對象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。
學(xué)法:指導學(xué)生掌握“觀(guān)察——猜想——證明——應用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識應用于對任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習,觀(guān)察,類(lèi)比,思考,探究,動(dòng)手嘗試相結合,增強學(xué)生由特殊到一般的數學(xué)思維能力,鍥而不舍的求學(xué)精神。
四、教學(xué)過(guò)程
(一)創(chuàng )設情境,布疑激趣
“興趣是最好的老師”,如果一節課有個(gè)好的開(kāi)頭,那就意味著(zhù)成功了一半,本節課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(cháng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(cháng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習的興趣,從而進(jìn)入今天的學(xué)習課題。
(二)探尋特例,提出猜想
1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現正弦定理。
2.那結論對任意三角形都適用嗎?指導學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進(jìn)行驗證。
3.讓學(xué)生總結實(shí)驗結果,得出猜想:
在三角形中,角與所對的邊滿(mǎn)足關(guān)系
這為下一步證明樹(shù)立信心,不斷的使學(xué)生對結論的認識從感性逐步上升到理性。
(三)邏輯推理,證明猜想
1.強調將猜想轉化為定理,需要嚴格的理論證明。
2.鼓勵學(xué)生通過(guò)作高轉化為熟悉的直角三角形進(jìn)行證明。
3.提示學(xué)生思考哪些知識能把長(cháng)度和三角函數聯(lián)系起來(lái),繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學(xué)思想。
4.思考是否還有其他的方法來(lái)證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來(lái)證明。
(四)歸納總結,簡(jiǎn)單應用
1.讓學(xué)生用文字敘述正弦定理,引導學(xué)生發(fā)現定理具有對稱(chēng)和諧美,提升對數學(xué)美的享受。
2.正弦定理的內容,討論可以解決哪幾類(lèi)有關(guān)三角形的問(wèn)題。
3.運用正弦定理求解本節課引入的三角形零件邊長(cháng)的問(wèn)題。自己參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀(guān)。
(五)講解例題,鞏固定理
1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。
例1簡(jiǎn)單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來(lái)解三角形。
2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。
例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。
(六)課堂練習,提高鞏固
1.在△ABC中,已知下列條件,解三角形。
(1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm
2.在△ABC中,已知下列條件,解三角形。
(1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°
學(xué)生板演,老師巡視,及時(shí)發(fā)現問(wèn)題,并解答。
(七)小結反思,提高認識
通過(guò)以上的研究過(guò)程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會(huì )?
1.用向量證明了正弦定
理,體現了數形結合的數學(xué)思想。
2.它表述了三角形的邊與對角的正弦值的關(guān)系。
3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類(lèi)討論的思想。
(從實(shí)際問(wèn)題出發(fā),通過(guò)猜想、實(shí)驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問(wèn)題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著(zhù)結論,而且整個(gè)探索過(guò)程我們也掌握了研究問(wèn)題的一般方法。在強調研究性學(xué)習方法,注重學(xué)生的主體地位,調動(dòng)學(xué)生積極性,使數學(xué)教學(xué)成為數學(xué)活動(dòng)的教學(xué)。)
(八)任務(wù)后延,自主探究
如果已知一個(gè)三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現正弦定理不適用了,那么自然過(guò)渡到下一節內容,余弦定理。布置作業(yè),預習下一節內容。
高中數學(xué)說(shuō)課稿4
一、說(shuō)教材
1、 教材的地位和作用
《集合的概念》是人教版第一章的內容(中職數學(xué))。本節課的主要內容:集合以及集合有關(guān)的概念,元素與集合間的關(guān)系。初中數學(xué)課本中已現了一些數和點(diǎn)的集合,如:自然數的集合、有理數的集合、不等式解的集合等,但學(xué)生并不清楚“集合”在數學(xué)中的含義,集合是一個(gè)基礎性的概念,也是也是中職數學(xué)的開(kāi)篇,是我們后續學(xué)習的重要工具,如:用集合的語(yǔ)言表示函數的定義域、值域、方程與不等式的解集,曲線(xiàn)上點(diǎn)的集合等。通過(guò)本章節的學(xué)習,能讓學(xué)生領(lǐng)會(huì )到數學(xué)語(yǔ)言的簡(jiǎn)潔和準確性,幫助學(xué)生學(xué)會(huì )用集合的語(yǔ)言描述客觀(guān),發(fā)展學(xué)生運用數學(xué)語(yǔ)言交流的能力。
2、 教學(xué)目標
。1)知識目標:a、通過(guò)實(shí)例了解集合的含義,理解集合以及有關(guān)概念;
b、初步體會(huì )元素與集合的“屬于”關(guān)系,掌握元素與集合關(guān)系的表示方法。
。2)能力目標:a、讓學(xué)生感知數學(xué)知識與實(shí)際生活得密切聯(lián)系,培養學(xué)生解決實(shí)際的能力;
b、學(xué)會(huì )借助實(shí)例分析,探究數學(xué)問(wèn)題,發(fā)展學(xué)生的觀(guān)察歸納能力。
。3)情感目標:a、通過(guò)聯(lián)系生活,提高學(xué)生學(xué)習數學(xué)的積極性,形成積極的學(xué)習態(tài)度;
b、通過(guò)主動(dòng)探究,合作交流,感受探索的樂(lè )趣和成功的體驗,體會(huì )數學(xué)的理性和嚴謹。
3、重點(diǎn)和難點(diǎn)
重點(diǎn):集合的概念,元素與集合的關(guān)系。
難點(diǎn):準確理解集合的概念。
二、學(xué)情分析(說(shuō)學(xué)情)
對于中職生來(lái)說(shuō),學(xué)生的數學(xué)基礎相對薄弱,他們還沒(méi)具備一定的觀(guān)察、分析理解、解決實(shí)際問(wèn)題的能力,在運算能力、思維能力等方面參差不齊,學(xué)生學(xué)好數學(xué)的自信心不強,學(xué)習積極性不高,有厭學(xué)情緒。
三、說(shuō)教法
針對學(xué)生的實(shí)際情況,采用探究式教學(xué)法進(jìn)行教學(xué)。首先從學(xué)生較熟悉的實(shí)例出發(fā),提高學(xué)生的注意力和激發(fā)學(xué)生的學(xué)習興趣。在創(chuàng )設情境認知策略上給予適當的點(diǎn)撥和引導,引導學(xué)生主動(dòng)思、交流、討論,提出問(wèn)題。在此基礎上教師層層深入,啟發(fā)學(xué)生積極思維,逐步提升學(xué)生的數學(xué)學(xué)習能力。集合概念的形成遵循由感性到理性,由具體到抽象,便于學(xué)生的理解和掌握。
四、學(xué)習指導(說(shuō)學(xué)法)
教學(xué)的矛盾主要方面是學(xué)生的學(xué),學(xué)是中心,會(huì )學(xué)是目的,因此在教學(xué)中要不斷指導學(xué)生學(xué)會(huì )學(xué)習。根據數學(xué)的特點(diǎn)這節課主要是教學(xué)生動(dòng)腦思考、多訓練、勤鉆研的研討,這樣做增加了學(xué)生主動(dòng)參與的機會(huì ),增強了參與的意識,教學(xué)生獲取知識的途徑,思考問(wèn)題的方法,使學(xué)生成為教學(xué)的主體,進(jìn)而才能達到預期的教學(xué)目的和效果。
五、教學(xué)過(guò)程
1、引入新課:
a、創(chuàng )設情境,揭示本課主題,同時(shí)對集合的整體性有個(gè)初步的感性認識。
b、介紹集合論的創(chuàng )始者康托爾
2、究竟什么是集合?(實(shí)例探究)切合學(xué)生現有的認知水平, 以學(xué)生熟悉的事物(物體),以實(shí)際生活為背景進(jìn)行探究, 為本課教學(xué)創(chuàng )造出一種自然和諧的氛圍,充分調動(dòng)學(xué)生的學(xué)習熱情接待探究過(guò)程學(xué)生積極思考、交流、作答,教師針對學(xué)生的回答啟發(fā),引導學(xué)生尋找實(shí)例中的共同特征,培養學(xué)生觀(guān)察,總結能力范圍由具體到抽象,由感性到理性,為下面水到渠成的介紹集合概念做好鋪墊。
3、集合的概念,本課的重點(diǎn)。結合探究中的實(shí)例,讓學(xué)生說(shuō)出集合和元素各是什么?知識的呈現由抽象到具體進(jìn)一步熟悉元素與集合的概念,讓學(xué)生分清實(shí)際問(wèn)題中的集合和元素為后面學(xué)習兩者間的關(guān)系做好鋪墊。
教師在這一環(huán)節做好學(xué)習指導,確定的'對象組成的整體叫集合,如果對象不確定,就不能確定為集合(舉例)加深對概念的理解。
4、 熟悉鞏固集合的概念通過(guò)例題,練習、幫助學(xué)生進(jìn)一步熟悉和理解集合的概念。
5、 集合的符號記法,為本節重點(diǎn)做好鋪墊。
6、 從實(shí)例入行手,探索元素和集合的關(guān)系,學(xué)生能用文字語(yǔ)言描述,如何用數學(xué)語(yǔ)言描述,給出元素與集合關(guān)系符號表示,在這個(gè)環(huán)節教師適當引導學(xué)生積極主動(dòng)參與到知識逐步形成過(guò)程,便于學(xué)生理解和掌握,落實(shí)本課的重點(diǎn),學(xué)習指導:⑴集合元素的確定。⑵理解兩符號的含義。
7、 思考交流本課的重要環(huán)節在課堂上給學(xué)生提供充分的活動(dòng)時(shí)間和空間。通過(guò)自由舉例,能深化概念。同時(shí)還能提升學(xué)生的分析能力表達自己見(jiàn)解的能力。
8、 從所舉的例子中抽象出數集的概念,并給出常見(jiàn)數集的記法。
9、 學(xué)生練習:通過(guò)練習,識記常見(jiàn)數集的記法,同時(shí)進(jìn)一步鞏固元素與集合間的關(guān)系。
10、知識的實(shí)際應用:
問(wèn)題不難,落實(shí)課本能力目標,培養學(xué)生運用數學(xué)的意識和能力初步培養學(xué)生應用集合的眼光觀(guān)看世界。
11、課堂小節
以學(xué)生小節為主教師幫助為輔,鞏固所學(xué)知識,幫助學(xué)生認識到要學(xué)會(huì )梳理所學(xué)內容,要學(xué)會(huì )總結反思,使學(xué)生的認識進(jìn)一步升華,培養學(xué)生的鬼納總結能力。
六、評價(jià)
教學(xué)評價(jià)的及時(shí)能有效調動(dòng)課堂氣氛,感染學(xué)生的情緒,對課堂教學(xué)發(fā)揮著(zhù)積極作用,教學(xué)過(guò)程遵重學(xué)生之間的差異培養學(xué)生應用集合的眼光看研究對象,注重過(guò)程評價(jià)與多元評價(jià)將教學(xué)評價(jià)貫穿于本堂課的每個(gè)教學(xué)環(huán)節。
七、教學(xué)反思
1、 通過(guò)現實(shí)生活中的實(shí)例,從特殊到一般,在具體感知基礎上得出集合的描述概念,便于學(xué)生理解接受。
2、 啟發(fā)探究教學(xué),營(yíng)造學(xué)生的學(xué)習氛圍,培養學(xué)生自主學(xué)習,合作交流的能力。
八、板書(shū)設計
高中數學(xué)說(shuō)課稿5
一、教材分析
1.教材所處的地位和作用
本節課所學(xué)內容為算法案例3,主要學(xué)習如何給一組數據排序,學(xué)習作程序框圖和設計程序,通過(guò)本節課的學(xué)習之后將能使許多復雜的問(wèn)題在計算機上得到解決,減少工作量。
2 教學(xué)的重點(diǎn)和難點(diǎn)
重點(diǎn):兩種排序法的排序步驟及計算機程序設計
難點(diǎn):排序法的計算機程序設計
二、教學(xué)目標分析
1.知識與技能目標:
掌握數據排序的原理能使用直接排序法與冒泡排序法給一組數據排序,進(jìn)而能設計冒泡排序法的程序框圖及程序,理解數學(xué)算法與計算機算法的區別,理解計算機對數學(xué)的輔助作用。
2.過(guò)程與方法目標:
能根據排序法中的直接插入排序法與冒泡排序法的步驟,了解數學(xué)計算轉換為計算機計算的途徑,從而探究計算機算法與數學(xué)算法的區別,體會(huì )計算機對數學(xué)學(xué)習的輔助作用。
3.情感,態(tài)度和價(jià)值觀(guān)目標
通過(guò)對排序法的學(xué)習,領(lǐng)會(huì )數學(xué)計算與計算機計算的區別,充分認識信息技術(shù)對數學(xué)的促進(jìn)。
三、教學(xué)方法與手段分析
1.教學(xué)方法:充分發(fā)揮學(xué)生的主體作用和教師的主導作用,采用啟發(fā)式,并遵循循序漸進(jìn)的教學(xué)原則。這有利于學(xué)生掌握從現象到本質(zhì),從已知到未知逐步形成概念的學(xué)習方法,有利于發(fā)展學(xué)生抽象思維能力和邏輯推理能力。
2.教學(xué)手段:通過(guò)各種教學(xué)媒體(計算機)調動(dòng)學(xué)生參與課堂教學(xué)的主動(dòng)性與積極性。
四、學(xué)法分析
模仿排序法中數字排序的步驟,理解計算機計算的一般步驟,領(lǐng)會(huì )數學(xué)計算在計算機上實(shí)施的要求。
五、教學(xué)過(guò)程分析
一、創(chuàng )設情境
提出問(wèn)題:大家考完試后如果要排一下成績(jì)的話(huà),單靠人手該怎樣操作呢?如果我們用計算機里的軟件電子表格對分數排序就非常簡(jiǎn)單,那么電子計算機是怎么對數據進(jìn)行排序的呢?
通過(guò)這個(gè)問(wèn)題,引出我們這節課所要學(xué)習的兩種排序方法--直接插入排序法與冒泡排序法
二、探索新知
這里我先讓學(xué)生們閱讀課本P30-P31的內容,然后回答下面的問(wèn)題:
(1)排序法中的直接插入排序法與冒泡排序法的步驟有什么區別?
(2)冒泡法排序中對5個(gè)數字進(jìn)行排序最多需要多少趟?
(3)在冒泡法排序對5個(gè)數字進(jìn)行排序的每一趟中需要比較大小幾次?
提出問(wèn)題,然后讓學(xué)生們作出回答,這樣可以促使學(xué)生們能夠積極思考,自主地去學(xué)習新的知識,而不只是單向的由老師向學(xué)生灌輸。
三、知識應用
例1 用冒泡排序法對數據7,5,3,9,1從小到大進(jìn)行排序
。ǜ鶕⻊倓偺釂(wèn)所總結的方法完成解題步驟)
練習:寫(xiě)出用冒泡排序法對5個(gè)數據4,11,7,9,6排序的過(guò)程中每一趟排序的結果.
。皶r(shí)將學(xué)到的`知識應用,有利于知識的掌握)
例2 設計冒泡排序法對5個(gè)數據進(jìn)行排序的程序框圖.
(在之前所學(xué)習知識的基礎上畫(huà)出程序框圖,然后給出一個(gè)思考題)
思考:直接插入排序法的程序框圖如何設計?可否把上述程序框圖轉化為程序?
。ㄖ蟪鲆粋(gè)練習題,找出思考題的答案)
練習:用直接插入排序法對例1中的數據從小到大排序,畫(huà)出程序框圖,并轉化為程序運行求出最終答案。
。ㄟ@里可以使學(xué)生們領(lǐng)會(huì )數學(xué)計算與計算機計算的區別,充分認識信息技術(shù)對數學(xué)的促進(jìn)。)
四、課堂小結:
(1)數字排序法中的常見(jiàn)的兩種排序法直接插入排序法與冒泡排序法它們的排序步驟
(2兩種排序法的計算機程序設計
(3)注意循環(huán)語(yǔ)句的使用與算法的循環(huán)次數,對算法進(jìn)行改進(jìn)。
通過(guò)小結使學(xué)生們對知識有一個(gè)系統的認識,突出重點(diǎn),抓住關(guān)鍵,培養概括能力。
高中數學(xué)說(shuō)課稿6
1、教學(xué)目標:
一、借助單位圓理解任意角的三角函數的定義。
二、根據三角函數的定義,能夠判斷三角函數值的符號。
三、通過(guò)學(xué)生積極參與知識的"發(fā)現"與"形成"的過(guò)程,培養合情猜測的能力,從中感悟數學(xué)概念的嚴謹性與科學(xué)性。
四、讓學(xué)生在任意角三角函數概念的形成過(guò)程中,體會(huì )函數思想,體會(huì )數形結合思想。
2、教學(xué)重點(diǎn)與難點(diǎn):
重點(diǎn):任意角的正弦、余弦、正切的定義;三角函數值的符號。
難點(diǎn):任意角的三角函數概念的建構過(guò)程。
授課過(guò)程:
一、引入
在我們的現實(shí)世界中的許多運動(dòng)變化都有循環(huán)往復、周而復始的現象,這種變化規律稱(chēng)為周期性。如何用數學(xué)的方法來(lái)刻畫(huà)這種變化?從這節課開(kāi)始,我們要來(lái)學(xué)習刻畫(huà)這種規律的數學(xué)模型之一――三角函數。
二、創(chuàng )設情境
三角函數是與角有關(guān)的函數,在學(xué)習任意角概念時(shí),我們知道在直角坐標系中研究角,可以給學(xué)習帶來(lái)許多方便,比如我們可以根據角終邊的位置把它們進(jìn)行歸類(lèi),現在大家考慮:若在直角坐標系中來(lái)研究銳角,則銳角三角函數又可怎樣定義呢?
學(xué)生情況估計:學(xué)生可能會(huì )提出兩種定義的方式,一種定義為邊之比,另一種定義在比值中引入了終邊上的一點(diǎn)P的坐標。
問(wèn)題:
1、銳角三角函數能否表示成第二種比值方式?
2、點(diǎn)P能否取在終邊上的其它位置?為什么?
3、點(diǎn)P在哪個(gè)位置,比值會(huì )更簡(jiǎn)潔?(引出單位圓的定義)。指出sina=mP的函數依舊表示一個(gè)比值,不過(guò)其分母為1而已。
練習:計算的各三角函數值。
三、任意角的三角函數的定義
角的概念已經(jīng)推廣道了任意角,那么三角函數的定義在任意角的范圍里改怎么定義呢?
嘗試:根據銳角三角函數的定義,你能?chē)L試著(zhù)給出任意角三角函數的定義嗎?
評價(jià)學(xué)生給出的定義。給出任意角三角函數的定義。
四、解析任意角三角函數的定義
三角函數首先是函數。你能從函數觀(guān)點(diǎn)解析三角函數嗎?(定義域)
對于確定的角a,上面三個(gè)函數值都是唯一確定的,所以,正弦、余弦、正切都是以角為自變量,以單位圓上點(diǎn)的坐標或坐標的比值為函數值的函數,我們將它們統稱(chēng)為三角函數。由于角的集合和實(shí)數集之間可以建立一一對應的關(guān)系,三角函數可以看成是自變量為實(shí)數的函數。
五、三角函數的應用。
1、已知角,求a的三角函數值。
2、已知角a終邊上的一點(diǎn)P(-3,-4),求各三角函數值。
以上兩道書(shū)上的例題,讓學(xué)生自習看書(shū),學(xué)生看書(shū)的同時(shí),老師提出問(wèn)題:
1、已知角如何求三角函數值?
2、利用角a的終邊上任意一點(diǎn)的坐標也可以定義三角函數,你能給出這種定義嗎?(這種定義與課本中給出的.定義各有什么特點(diǎn)?)
3、變式:已知角a終邊上點(diǎn)P(-3b,-4b),(b0),求角a的各三角函數值。
4、探究:三角函數的值在各象限的符號。
六、小結及作業(yè)
教案設計說(shuō)明:
新教材的教學(xué)理念之一是讓學(xué)生去體驗新知識的發(fā)生過(guò)程,這節《任意角三角函數》的教案,主要圍繞這一點(diǎn)來(lái)設計。
首先,角的概念推廣了,那么銳角三角函數的定義是否也該推廣到任意角的三角函數的定義呢?通過(guò)這個(gè)問(wèn)題,讓學(xué)生體會(huì )到新知識的發(fā)生是可能的,自然的。
其次,到底應該怎樣去合理定義任意角的三角函數呢?讓學(xué)生提出自己的想法,同時(shí)讓學(xué)生去辨證這個(gè)想法是否是科學(xué)的?因為一個(gè)概念是嚴謹的,科學(xué)的,不能隨心所欲地編造,必須去論證它的合理性,至少這種概念不能和銳角三角函數的定義有所沖突。在這個(gè)立-破的過(guò)程中,讓學(xué)生去體驗一個(gè)新的數學(xué)概念可能是如何形成,在形成的過(guò)程中可以從哪些角度加以科學(xué)的辯思。這樣也有助于學(xué)生對任意角三角函數概念的理解。
再次,讓學(xué)生充分體會(huì )在任意角三角函數定義的推廣中,是如何將直角三角形這個(gè)"形"的問(wèn)題,轉換到直角坐標系下點(diǎn)的坐標這個(gè)"數"的過(guò)程的。培養數形結合的思想。
高中數學(xué)說(shuō)課稿7
高中數學(xué)第三冊(選修)Ⅱ第一章第2節第一課時(shí)
一、教材分析
教材的地位和作用
期望是概率論和數理統計的重要概念之一,是反映隨機變量取值分布的特征數,學(xué)習期望將為今后學(xué)習概率統計知識做鋪墊。同時(shí),它在市場(chǎng)預測,經(jīng)濟統計,風(fēng)險與決策等領(lǐng)域有著(zhù)廣泛的應用,為今后學(xué)習數學(xué)及相關(guān)學(xué)科產(chǎn)生深遠的影響。
教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):離散型隨機變量期望的概念及其實(shí)際含義。
難點(diǎn):離散型隨機變量期望的實(shí)際應用。
[理論依據]本課是一節概念新授課,而概念本身具有一定的抽象性,學(xué)生難以理解,因此把對離散性隨機變量期望的概念的教學(xué)作為本節課的教學(xué)重點(diǎn)。此外,學(xué)生初次應用概念解決實(shí)際問(wèn)題也較為困難,故把其作為本節課的教學(xué)難點(diǎn)。
二、教學(xué)目標
[知識與技能目標]
通過(guò)實(shí)例,讓學(xué)生理解離散型隨機變量期望的概念,了解其實(shí)際含義。
會(huì )計算簡(jiǎn)單的離散型隨機變量的期望,并解決一些實(shí)際問(wèn)題。
[過(guò)程與方法目標]
經(jīng)歷概念的建構這一過(guò)程,讓學(xué)生進(jìn)一步體會(huì )從特殊到一般的思想,培養學(xué)生歸納、概括等合情推理能力。
通過(guò)實(shí)際應用,培養學(xué)生把實(shí)際問(wèn)題抽象成數學(xué)問(wèn)題的能力和學(xué)以致用的.數學(xué)應用意識。
[情感與態(tài)度目標]
通過(guò)創(chuàng )設情境激發(fā)學(xué)生學(xué)習數學(xué)的情感,培養其嚴謹治學(xué)的態(tài)度。在學(xué)生分析問(wèn)題、解決問(wèn)題的過(guò)程中培養其積極探索的精神,從而實(shí)現自我的價(jià)值。
三、教法選擇
引導發(fā)現法
四、學(xué)法指導
“授之以魚(yú),不如授之以漁”,注重發(fā)揮學(xué)生的主體性,讓學(xué)生在學(xué)習中學(xué)會(huì )怎樣發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題。
五、教學(xué)的基本流程設計
高中數學(xué)第三冊《離散型隨機變量的期望》說(shuō)課教案.rar
高中數學(xué)說(shuō)課稿8
一、教學(xué)目標
。1)知識與能力目標:學(xué)習橢圓的定義,掌握橢圓標準方程的兩種形式及其推
導過(guò)程;能根據條件確定橢圓的標準方程,掌握用待定系數法求橢圓的標準方程。
。2)過(guò)程與方法目標:通過(guò)對橢圓概念的引入教學(xué),培養學(xué)生的觀(guān)察能力和探
索能力;通過(guò)對橢圓標準方程的推導,使學(xué)生進(jìn)一步掌握求曲線(xiàn)方程的一般方法,提高學(xué)生運用坐標法解決幾何問(wèn)題的能力,并滲透數形結合和等價(jià)轉化的數學(xué)思想方法。
。3)情感、態(tài)度與價(jià)值觀(guān)目標:通過(guò)讓學(xué)生大膽探索橢圓的定義和標準方程,激發(fā)學(xué)生學(xué)習數學(xué)的積極性,培養學(xué)生的學(xué)習興趣和創(chuàng )新意識,培養學(xué)生勇于探索的精神和滲透辯證唯物主義的方法論和認識論。
二、教學(xué)重點(diǎn)、難點(diǎn)
。1)教學(xué)重點(diǎn):橢圓的定義及橢圓標準方程,用待定系數法和定義法求曲線(xiàn)方程。
。2)教學(xué)難點(diǎn):橢圓標準方程的建立和推導。
三、教學(xué)過(guò)程
(一)創(chuàng )設情境,引入概念
1、動(dòng)畫(huà)演示,描繪出橢圓軌跡圖形。
2、實(shí)驗演示。
思考:橢圓是滿(mǎn)足什么條件的點(diǎn)的軌跡呢?
(二)實(shí)驗探究,形成概念
1、動(dòng)手實(shí)驗:學(xué)生分組動(dòng)手畫(huà)出橢圓。
實(shí)驗探究:
保持繩長(cháng)不變,改變兩個(gè)圖釘之間的距離,畫(huà)出的橢圓有什么變化?
思考:根據上面探究實(shí)踐回答,橢圓是滿(mǎn)足什么條件的點(diǎn)的軌跡?
2、概括橢圓定義
引導學(xué)生概括橢圓定義橢圓定義:平面內與兩個(gè)定點(diǎn)距離的和等于常數(大于)的點(diǎn)的軌跡叫橢圓。
教師指出:這兩個(gè)定點(diǎn)叫橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫橢圓的焦距。
思考:焦點(diǎn)為的橢圓上任一點(diǎn)M,有什么性質(zhì)?
令橢圓上任一點(diǎn)M,則有
(三)研討探究,推導方程
1、知識回顧:利用坐標法求曲線(xiàn)方程的一般方法和步驟是什么?
2、研討探究
問(wèn)題:如圖已知焦點(diǎn)為的.橢圓,且=2c,對橢圓上任一點(diǎn)M,有
,嘗試推導橢圓的方程。
思考:如何建立坐標系,使求出的方程更為簡(jiǎn)單?
將各組學(xué)生的討論方案歸納起來(lái)評議,選定以下兩種方案,由各組學(xué)生自己完成設點(diǎn)、列式、化簡(jiǎn)。
方案一方案二
按方案一建立坐標系,師生研討探究得到橢圓標準方程
=1(),其中b2=a2-c2(b>0);
選定方案二建立坐標系,由學(xué)生完成方程化簡(jiǎn)過(guò)程,可得出=1,同樣也有a2-c2=b2(b>0)。
教師指出:我們所得的兩個(gè)方程=1和=1()都是橢圓的標準方程。
(四)歸納概括,方程特征
1、觀(guān)察橢圓圖形及其標準方程,師生共同總結歸納
。1)橢圓標準方程對應的橢圓中心在原點(diǎn),以焦點(diǎn)所在軸為坐標軸;
。2)橢圓標準方程形式:左邊是兩個(gè)分式的平方和,右邊是1;
。3)橢圓標準方程中三個(gè)參數a,b,c關(guān)系:;
。4)橢圓焦點(diǎn)的位置由標準方程中分母的大小確定;
。5)求橢圓標準方程時(shí),可運用待定系數法求出a,b的值。
2、在歸納總結的基礎上,填下表
標準方程
圖形a,b,c關(guān)系焦點(diǎn)坐標焦點(diǎn)位置
在x軸上
在y軸上
(五)例題研討,變式精析
例1、求適合下列條件的橢圓的標準方程
。1)兩個(gè)焦點(diǎn)的坐標分別是,橢圓上一點(diǎn)P到兩焦點(diǎn)距離和等于10。
。2)兩焦點(diǎn)坐標分別是,并且橢圓經(jīng)過(guò)點(diǎn)。
例2、(1)若橢圓標準方程為及焦點(diǎn)坐標。
。2)若橢圓經(jīng)過(guò)兩點(diǎn)求橢圓標準方程。
。3)若橢圓的一個(gè)焦點(diǎn)是,則k的值為。
。ˋ)(B)8(C)(D)32
例3、如圖,已知一個(gè)圓的圓心為坐標原點(diǎn),半徑為2,從這個(gè)圓上任意一點(diǎn)P向x軸作垂線(xiàn)段,求線(xiàn)段中點(diǎn)M的軌跡。
(六)變式訓練,探索創(chuàng )新
1、寫(xiě)出適合下列條件的橢圓標準方程
。1),焦點(diǎn)在x軸上;
。2)焦點(diǎn)在x軸上,焦距等于4,并且經(jīng)過(guò)點(diǎn)P;
2、若方程表示焦點(diǎn)在y軸上的橢圓,則k的范圍。
3、已知B,C是兩個(gè)定點(diǎn),周長(cháng)為16,求頂點(diǎn)A的軌跡方程。
4、已知橢圓的焦距相等,求實(shí)數m的值。
5、在橢圓上上求一點(diǎn),使它與兩個(gè)焦點(diǎn)連線(xiàn)互相垂直。
6、已知P是橢圓上一點(diǎn),其中為其焦點(diǎn)且,求三解形面積。
(七)小結歸納,提高認識
師生共同歸納本節所學(xué)內容、知識規律以及所學(xué)的數學(xué)思想和方法。
(八)作業(yè)訓練,鞏固提高
課本第96頁(yè)習題§8。1第3題、第5題、第6題。
課后思考題:
1、知是橢圓的兩個(gè)焦點(diǎn),AB是過(guò)的弦,則周長(cháng)是。
。ˋ)2a(B)4a(C)8a(D)2a2b
2、的兩個(gè)頂點(diǎn)A,B的坐標分別是邊AC,BC所在直線(xiàn)的斜
率之積等于,求頂點(diǎn)C的軌跡方程。
2、與圓外切,同時(shí)與圓內切,求動(dòng)圓圓心的軌跡方程,并說(shuō)明它是什么樣的曲線(xiàn)?
教學(xué)設計說(shuō)明
橢圓是圓錐曲線(xiàn)中重要的一種,本節內容的學(xué)習是后繼學(xué)習其它圓錐曲線(xiàn)的基礎,坐標法是解析幾何中的重要數學(xué)方法,橢圓方程的推導是利用坐標法求曲線(xiàn)方程的很好應用實(shí)例。本節課內容的學(xué)習能很好地在課堂教學(xué)中展現新課程的理念,主要采用學(xué)生自主探究學(xué)習的方式,使培養學(xué)生的探索精神和創(chuàng )新能力的教學(xué)思想貫穿于本節課教學(xué)設計的始終。
橢圓是生活中常見(jiàn)的圖形,通過(guò)實(shí)驗演示,創(chuàng )設生動(dòng)而直觀(guān)的情境,使學(xué)生親身體會(huì )橢圓與生活聯(lián)系,有助于激發(fā)學(xué)生對橢圓知識的學(xué)習興趣;在橢圓概念引入的過(guò)程中,改變了直接給出橢圓概念和動(dòng)畫(huà)畫(huà)出橢圓的方式,而采用學(xué)生動(dòng)手畫(huà)橢圓并合作探究的學(xué)習方式,讓學(xué)生親身經(jīng)歷橢圓概念形成的數學(xué)化過(guò)程,有利于培養學(xué)生觀(guān)察分析、抽象概括的能力。
橢圓方程的化簡(jiǎn)是學(xué)生從未經(jīng)歷的問(wèn)題,方程的推導過(guò)程采用學(xué)生分組探究,師生共同研討方程的化簡(jiǎn)和方程的特征,可以讓學(xué)生主體參與橢圓方程建立的具體過(guò)程,使學(xué)生真正了解橢圓標準方程的來(lái)源,并在這種師生嘗試探究、合作討論的活動(dòng)中,使學(xué)生體會(huì )成功的快樂(lè ),提高學(xué)生的數學(xué)探究能力,培養學(xué)生獨立主動(dòng)獲取知識的能力。
設計例題、習題的研討探究變式訓練,是為了讓學(xué)生能靈活地運用橢圓的知識解決問(wèn)題,同時(shí)也是為了更好地調動(dòng)、活躍學(xué)生的思維,發(fā)展學(xué)生數學(xué)思維能力,讓學(xué)生在解決問(wèn)題中發(fā)展學(xué)生的數學(xué)應用意識和創(chuàng )新能力,同時(shí)培養學(xué)生大膽實(shí)踐、勇于探索的精神,開(kāi)闊學(xué)生知識應用視野。
高中數學(xué)說(shuō)課稿9
一、教材分析
1· 教材的地位和作用
在學(xué)習這節課以前,我們已經(jīng)學(xué)習了振幅變換。本節知識是學(xué)習函數圖象變換綜合應用的基礎,在教材地位上顯得十分重要。
y=asin(ωx+φ)圖象變換的學(xué)習有助于學(xué)生進(jìn)一步理解正弦函數的圖象和性質(zhì),加深學(xué)生對函數圖象變換的理解和認識,加深數形結合在數學(xué)學(xué)習中的應用的認識。同時(shí)為相關(guān)學(xué)科的學(xué)習打下扎實(shí)的基礎。
、步滩牡闹攸c(diǎn)和難點(diǎn)
重點(diǎn)是對周期變換、相位變換規律的理解和應用。
難點(diǎn)是對周期變換、相位變換先后順序的調整,對圖象變換的影響。
、辰滩膬热莸陌才藕吞幚
函數y=asin(ωx+φ)圖象這部分內容計劃用3課時(shí),本節是第2課時(shí),主要學(xué)習周期變換和相位變換,以及兩種變換的綜合應用。
二、目的分析
、敝R目標
掌握相位變換、周期變換的變換規律。
、材芰δ繕
培養學(xué)生的觀(guān)察能力、動(dòng)手能力、歸納能力、分析問(wèn)題解決問(wèn)題能力。
、车掠繕
在教學(xué)中努力培養學(xué)生的“由簡(jiǎn)單到復雜、由特殊到一般”的辯證思想,培養學(xué)生的探究能力和協(xié)作學(xué)習的能力。
、辞楦心繕
通過(guò)學(xué)數學(xué),用數學(xué),進(jìn)而培養學(xué)生對數學(xué)的興趣。
三、教具使用
、俦菊n安排在電腦室教學(xué),每個(gè)學(xué)生都擁有一臺計算機,所有的計算機由一套多媒體演示控制系統連接,以實(shí)現師生、生生的相互溝通。
、谡n前應先把本課所需要的幾何畫(huà)板課件通過(guò)多媒體演示系統發(fā)送到每一臺學(xué)生電腦。
四、教法、學(xué)法分析
本節課以“探究——歸納——應用”為主線(xiàn),通過(guò)設置問(wèn)題情境,引導學(xué)生自主探究,總結規律,并能應用規律分析問(wèn)題、解決問(wèn)題。
以學(xué)生的自主探究為主要方式,把計算機使用的主動(dòng)權交給學(xué)生,讓學(xué)生主動(dòng)去學(xué)習新知、探究未知,在活動(dòng)中學(xué)習數學(xué)、掌握數學(xué),并能數學(xué)地提出問(wèn)題、解決問(wèn)題。
五、教學(xué)過(guò)程
教學(xué)過(guò)程設計:
預備知識
一、問(wèn)題探究
、艓熒献魈骄恐芷谧儞Q
、茖W(xué)生自主探究相位變換
二、歸納概括
三、實(shí)踐應用
教學(xué)程序
設計說(shuō)明
〖預備知識
1我們已經(jīng)學(xué)習了幾種圖象變換?
2這些變換的規律是什么?
幫助學(xué)生鞏固、理解和歸納基礎知識,為后面的學(xué)習作鋪墊。促使學(xué)生學(xué)會(huì )對知識的歸納梳理。
〖問(wèn)題探究
。ㄒ唬⿴熒献魈骄恐芷谧儞Q
(1)自己動(dòng)手,在幾何畫(huà)板中分別觀(guān)察①y=sinx→y=sin2x;②y=sinx→y=sin
x圖象的變換過(guò)程,指出變換過(guò)程中圖象上每一個(gè)點(diǎn)的坐標發(fā)生了什么變化。
(2) 在上述變換過(guò)程中,橫坐標的'伸長(cháng)和縮短與ω之間存在怎樣的關(guān)系?
。ǘ⿲W(xué)生自主探究相位變換
(1)我們初中學(xué)過(guò)的由y=f(x)→y=f(x+a)的圖象變換規律是怎樣的?
(2) 令f(x)=sinx,則f(x+φ)=sin (x+φ),那么y=sinx→y=sin (x+φ)的變換是不是也符合上述規律呢?請動(dòng)手用幾何畫(huà)板加以驗證。
設計這個(gè)問(wèn)題的主要用意是讓學(xué)生通過(guò)觀(guān)察圖象變換的過(guò)程,了解周期變換的基本規律。
設計這個(gè)問(wèn)題意圖是引導學(xué)生再次認真觀(guān)察圖象變換的過(guò)程,以便總結周期變換的規律。
師生合作探究已經(jīng)讓學(xué)生掌握了探究圖象變換的基本方法,在此基礎上,由學(xué)生自主探究相位變換規律,提高學(xué)生的綜合能力。
〖歸納概括
通過(guò)以上探究,你能否總結出周期變換和相位變換的一般規律?
設計這個(gè)環(huán)節的意圖是通過(guò)對上述變換過(guò)程的探究,進(jìn)而引導學(xué)生歸納概括,從現象到本質(zhì),總結出周期變換和相位變換的一般規律。
〖實(shí)踐應用
。ㄒ唬⿷门e例
(1)用五點(diǎn)法作出y=sin(2x+)一個(gè)周期內的簡(jiǎn)圖。
(2)我們可以通過(guò)哪些方法完成y=sinx到y=sin(2x+)的圖象變換
(3)請動(dòng)手驗證上述方法,把幾何畫(huà)板所得圖象與用五點(diǎn)法作出的簡(jiǎn)圖作比較,觀(guān)察哪些方法是正確的,哪些方法是錯誤的。
(4)歸納總結
從上述的變換過(guò)程中,我們知道若f(x) =sin2x,則f(___)= sin(2x+),由f(x)→f(x+a)的變換規律得從y=sin2x →y= sin(2x+)的變換應該是_____.
。ǘ┓謱佑柧
a組題(基礎題)
如何完成下列圖象的變換:
、賧=sin3x→y=sin(3x+1)
、趛=sin(x+1) →y=sin(3x+1)
b組題(中等題)
如何完成下列圖象的變換:
、賧=sin3x→y=sin(3x+1)
、趛=sin(x+1) →y=sin(3x+1)
、踶=sinx →y=sin(3x+1)
c組題(拓展題)
、偃绾瓮瓿上铝袌D象的變換:
y=sinx →y=sin(3x+1)
、谖覀冎,從f(x)到f(x)+k的變換可通過(guò)圖象的上下平移(k>0上移)(k<0下移)|k|個(gè)單位得到。那么由y=f(x)→y=af(x)+k的變換中,振幅變換和上下平移變換是不是也有先后順序呢?請通過(guò)實(shí)例加以驗證。
讓學(xué)生用五點(diǎn)法作出這個(gè)圖象是為了驗證變換方法是否正確。
給出這個(gè)問(wèn)題的用意是開(kāi)拓學(xué)生的思維,讓學(xué)生從多角度思考問(wèn)題。
這個(gè)步驟主要目的是培養學(xué)生的探究能力和動(dòng)手能力。
這個(gè)問(wèn)題的解決,是突破本課難點(diǎn)的關(guān)鍵。通過(guò)問(wèn)題的解決,讓學(xué)生理解如果先進(jìn)行周期變換,而后進(jìn)行相位變換,應特別關(guān)注x的變化量。
a組題重在基礎知識的掌握,
由基礎較薄弱的同學(xué)完成。
b組比a組增加了第③小題,
重在對兩種變換的綜合應用。
c組除了考查知識的綜合應用,
還要求學(xué)生對新問(wèn)題進(jìn)行探究,
有較大難度,適合基礎較好的
同學(xué)完成。
作業(yè):
。1)必做題
。2)選做題
作業(yè)分為兩種形式,體現作業(yè)的鞏固性和發(fā)展性原則。選做題不作統一要求,供學(xué)有余力的學(xué)生課后研究。
六、評價(jià)分析
在本節的教與學(xué)活動(dòng)中,始終體現以學(xué)生的發(fā)展為本的教育理念。在學(xué)生已有的認知基礎上進(jìn)行設問(wèn)和引導,關(guān)注學(xué)生的認知過(guò)程,注意學(xué)生的品德、思維和心理等方面的發(fā)展。重視動(dòng)手能力的培養,重視問(wèn)題探究意識和能力的培養。同時(shí),考慮不同學(xué)生的個(gè)性差異和發(fā)展層次,使不同的學(xué)生得到不同的發(fā)展,體現因材施教原則。
調節與反饋:
、膨炞C兩種變換的綜合時(shí),可能會(huì )出現有些學(xué)生無(wú)法觀(guān)察到兩種變換的區別這種情況,此時(shí),教師除了加以引導外,還需通過(guò)教師演示和詳細講解加以解決。
、平虒W(xué)中可能出現個(gè)別學(xué)生無(wú)法正確操作課件的情況,這種情況下一定要強調學(xué)生的協(xié)作意識。
附:板書(shū)設計
高中數學(xué)說(shuō)課稿10
各位評委,老師們:大家好!
很高興參加這次說(shuō)課活動(dòng)。這對我來(lái)說(shuō)也是一次難得的學(xué)習和鍛煉的機會(huì ),感謝各位老師在百忙之中來(lái)此予以指導。希望各位評委和老師們對我的說(shuō)課內容提出寶貴意見(jiàn)。
我說(shuō)課的內容是<平面向量>的教學(xué),所用的教材是人民教育出版社出版的全日制普通高級中學(xué)教科書(shū)(試驗修訂本—必修)<數學(xué)>第一冊下,教學(xué)內容為第96頁(yè)至98頁(yè)第五章第一節。本校是浙江省一級重點(diǎn)中學(xué),學(xué)生基礎相對較好。我在進(jìn)行教學(xué)設計時(shí),也充分考慮到了這一點(diǎn)。
下面我從教材分析,教學(xué)目標的確定,教學(xué)方法的選擇和教學(xué)過(guò)程的設計四個(gè)方面來(lái)匯報我對這節課的教學(xué)設想。
一說(shuō)教材
。1)地位和作用
向量是近代數學(xué)中重要和基本的概念之一,有著(zhù)深刻的幾何背景,是解決幾何問(wèn)題的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以轉化為向量的加(減)法,數乘向量,數量積運算(運算率),從而把圖形的基本性質(zhì)轉化為向量的運算體系。向量是溝通代數,幾何與三角函數的一種工具,有著(zhù)極其豐富的實(shí)際背景,在數學(xué)和物理學(xué)科中具有廣泛的應用。
平面向量的基本概念是在學(xué)生了解了物理學(xué)中的有關(guān)力,位移等矢量的概念的基礎上進(jìn)一步對向量的深入學(xué)習。為學(xué)習向量的知識體系奠定了知識和方法基礎。
。2)教學(xué)結構的調整
課本在這一部分內容的教學(xué)為一課時(shí),首先從小船航行的距離和方向兩個(gè)要素出發(fā),抽象出向量的概念,并重點(diǎn)說(shuō)明了向量與數量的區別。然后介紹了向量的幾何表示,向量的長(cháng)度,零向量,單位向量,平行向量,共線(xiàn)向量,相等向量等基本概念。為使學(xué)生更好地掌握這些基本概念,同時(shí)深化其認知過(guò)程和探究過(guò)程。在教學(xué)中我將教學(xué)的順序做如下的調整:將本節教學(xué)中認知過(guò)程的教學(xué)內容適當集中,以突出這節課的主題;例題,習題部分主要由學(xué)生依照概念自行分析,獨立完成。
。3)重點(diǎn),難點(diǎn),關(guān)鍵
由于本節課是本章內容的第一節課,是學(xué)生學(xué)習本章的基礎。為了本章后面知識的學(xué)習,首先必須掌握向量的概念,要抓住向量的本質(zhì):大小與方向。所以向量,相等向量的概念,向量的幾何表示是這節課的重點(diǎn)。本節課是為高一后半學(xué)期學(xué)生設計的,盡管此時(shí)的學(xué)生已經(jīng)有了一定的學(xué)習方法和習慣,但根據以往的教學(xué)經(jīng)驗,多數學(xué)生對向量的認識還比較單一,僅僅考慮其大小,忽略其方向,這對學(xué)生的理解能力要求比較高,所以我認為向量概念也是這節課的難點(diǎn)。而解決這一難點(diǎn)的關(guān)鍵是多用復雜的幾何圖形中相等的有向線(xiàn)段讓學(xué)生進(jìn)行辨認,加深對向量的理解。
二說(shuō)教學(xué)目標的確定
根據本課教材的特點(diǎn),新大綱對本節課的教學(xué)要求,學(xué)生身心發(fā)展的合理需要,我從三個(gè)方面確定了以下教學(xué)目標:
。1)基礎知識目標:理解向量,零向量,單位向量,共線(xiàn)向量,平行向量,相等向量的概念,會(huì )用字母表示向量,能讀寫(xiě)已知圖中的向量。會(huì )根據圖形判定向量是否平行,共線(xiàn),相等。
。2)能力訓練目標:培養學(xué)生觀(guān)察、歸納、類(lèi)比、聯(lián)想等發(fā)現規律的一般方法,培養學(xué)生觀(guān)察問(wèn)題,分析問(wèn)題,解決問(wèn)題的能力。
。3)情感目標:讓學(xué)生在民主、和諧的共同活動(dòng)中感受學(xué)習的樂(lè )趣。
三說(shuō)教學(xué)方法的選擇
、窠虒W(xué)方法
本節課我采用了”啟發(fā)探究式的教學(xué)方法,根據本課教材的特點(diǎn)和學(xué)生的實(shí)際情況在教學(xué)中突出以下兩點(diǎn):
。1)由教材的特點(diǎn)確立類(lèi)比思維為教學(xué)的主線(xiàn)。
從教材內容看平面向量無(wú)論從形式還是內容都與物理學(xué)中的有向線(xiàn)段,矢量的概念類(lèi)似。因此在教學(xué)中運用類(lèi)比作為思維的主線(xiàn)進(jìn)行教學(xué)。讓學(xué)生充分體會(huì )數學(xué)知識與其他學(xué)科之間的聯(lián)系以及發(fā)生與發(fā)展的過(guò)程。
。2)由學(xué)生的特點(diǎn)確立自主探索式的學(xué)習方法
通常學(xué)生對于概念課學(xué)起來(lái)很枯燥,不感興趣,因此要考慮學(xué)生的情感需要,找一些學(xué)生感興趣的題材來(lái)激發(fā)學(xué)生的學(xué)習興趣,另外,學(xué)生都有表現自己的欲望,希望得到老師和其他同學(xué)的認可,要多表?yè)P,多肯定來(lái)激勵他們的學(xué)習熱情?紤]到我校學(xué)生的基礎較好,思維較為活躍,對自主探索式的學(xué)習方法也有一定的認識,所以在教學(xué)中我通過(guò)創(chuàng )設問(wèn)題情境,啟發(fā)引導學(xué)生運用科學(xué)的思維方法進(jìn)行自主探究。將學(xué)生的獨立思考,自主探究,交流討論等探索活動(dòng)貫穿于課堂教學(xué)的全過(guò)程,突出學(xué)生的主體作用。
、蚪虒W(xué)手段
本節課中,除使用常規的教學(xué)手段外,我還使用了多媒體投影儀和計算機來(lái)輔助教學(xué)。多媒體投影為師生的交流和討論提供了平臺;計算機演示的作圖過(guò)程則有助于滲透數形結合思想,更易于對概念的理解和難點(diǎn)的突破。
四教學(xué)過(guò)程的設計
、裰R引入階段———提出學(xué)習課題,明確學(xué)習目標
。1)創(chuàng )設情境——引入概念
數學(xué)學(xué)習應該與學(xué)生的生活融合起來(lái),從學(xué)生的生活經(jīng)驗和已有的知識背景出發(fā),讓他們在生活中去發(fā)現數學(xué)、探究數學(xué)、認識并掌握數學(xué)。
由生活中具體的向量的實(shí)例引入:大海中船只的航線(xiàn),中國象棋中”馬”,”象”的走法等。這些符合高中學(xué)生思維活躍,想象力豐富的特點(diǎn),有利于激發(fā)學(xué)生的學(xué)習興趣。
。2)觀(guān)察歸納——形成概念
由實(shí)例得出有向線(xiàn)段的概念,有向線(xiàn)段的三個(gè)要素:起點(diǎn),方向,長(cháng)度。明確知道了有向線(xiàn)段的起點(diǎn),方向和長(cháng)度,它的終點(diǎn)就唯一確定。再有目的的進(jìn)行設計,引導學(xué)生概括總結出本課新的知識點(diǎn):向量的概念及其幾何表示。
。3)討論研究——深化概念
在得到概念后進(jìn)行歸納,深化,之后向學(xué)生提出以下三個(gè)問(wèn)題:
、傧蛄康囊厥鞘裁?
、谙蛄恐g能否比較大?
、巯蛄颗c數量的區別是什么?
同時(shí)指出這就是本節課我們要研究和學(xué)習的主題。
、蛑R探索階段———探索平面向量的.平行向量。相等向量等概念
。1)總結反思——提高認識
方向相同或相反的非零向量叫平行向量,也即共線(xiàn)向量,并且規定0與任一向量平行.長(cháng)度相等且方向相同的向量叫相等向量,規定零向量與零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要條件。
。2)即時(shí)訓練—鞏固新知
為了使學(xué)生達到對知識的深化理解,從而達到鞏固提高的效果,我特地設計了一組即時(shí)訓練題,通過(guò)學(xué)生的觀(guān)察嘗試,討論研究,教師引導來(lái)鞏固新知識。
。劬毩1]判斷下列命題是否正確,若不正確,請簡(jiǎn)述理由.
、傧蛄颗c是共線(xiàn)向量,則A、B、C、D四點(diǎn)必在一直線(xiàn)上;
、趩挝幌蛄慷枷嗟;
、廴我幌蛄颗c它的相反向量不相等;
、芩倪呅蜛BCD是平行四邊形的充要條件是=;
、菽0是一個(gè)向量方向不確定的充要條件;
、薰簿(xiàn)的向量,若起點(diǎn)不同,則終點(diǎn)一定不同.
。劬毩2]下列命題正確的是( )
A.a(chǎn)與b共線(xiàn),b與c共線(xiàn),則a與c也共線(xiàn)
B.任意兩個(gè)相等的非零向量的始點(diǎn)與終點(diǎn)是一平行四邊形的四頂點(diǎn)
C.向量a與b不共線(xiàn),則a與b都是非零向量
D.有相同起點(diǎn)的兩個(gè)非零向量不平行
、笾R應用階段————共線(xiàn)向量,相等向量等概念的初步應用
在本階段的教學(xué)中,我采用的是課本上一道典型的例題:在一個(gè)復雜圖形中觀(guān)察,辨認平行,相等的有向線(xiàn)段。選用本題的目的是讓學(xué)生進(jìn)行獨立思考,自主探究,交流討論等探索活動(dòng),加深對概念的理解和對難點(diǎn)的突破。
例如圖所示,設O是正六邊形ABCDEF的中心,分別寫(xiě)出圖中與向量相等的向量。(同時(shí)思考:向量與相等么?向量與相等么?)
具體教學(xué)安排如下:
。1)分析解決問(wèn)題
先引導學(xué)生分析解決問(wèn)題。包括向量的概念,:向量相等的概念。抓住相等向量概念的實(shí)質(zhì):兩個(gè)向量只有當它們的模相等,同時(shí)方向又相同時(shí),才能稱(chēng)它們相等。進(jìn)而進(jìn)行正確的辨認,直至最終解決問(wèn)題。
。2)歸納解題方法
主要引導學(xué)生歸納以下兩個(gè)問(wèn)題:①零向量的方向是任意的,它只與零向量相
等;②兩個(gè)向量只要它們的模相等,方向相同就是相等向量。一個(gè)向量只要不改變它的大小和方向,是可以任意平行移動(dòng)的,既向量是自由的。
、魧W(xué)習,小結階段———歸納知識方法,布置課后作業(yè)
本階段通過(guò)學(xué)習小結進(jìn)行課堂教學(xué)的反饋,組織和指導學(xué)生歸納知識,技能,方法的一般規律,為后續學(xué)習打好基礎。
具體的教學(xué)安排如下:
。1)知識,方法小結在知識層面上我首先引導學(xué)生回顧本節課的主要內容,提醒學(xué)生要抓住向量的本質(zhì):大小與方向,對它們進(jìn)行類(lèi)比,加深對每個(gè)概念的理解。
在方法層面上我將帶領(lǐng)學(xué)生回顧探索過(guò)程中用到的思維方法和數學(xué)方法如:
類(lèi)比,數形結合,等價(jià)轉化等進(jìn)行強調。
。2)布置課后作業(yè)
閱讀教材96至97頁(yè)內容,整理課堂筆記,習題5。1第1,2,3題。
高中數學(xué)說(shuō)課稿11
大家好,今天我向大家說(shuō)課的題目是《正弦定理》。下面我將從以下幾個(gè)方面介紹我這堂課的教學(xué)設計。
一、教材分析
本節知識是必修五第一章《解三角形》的第一節內容,與初中學(xué)習的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,而且解三角形和三角函數聯(lián)系在高考當中也時(shí)?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。
根據上述教材內容分析,考慮到學(xué)生已有的認知結構心理特征及原有知識水平,制定如下教學(xué)目標:
認知目標:通過(guò)創(chuàng )設問(wèn)題情境,引導學(xué)生發(fā)現正弦定理的內容,掌握正弦定理的內容及其證明方法,使學(xué)生會(huì )運用正弦定理解決兩類(lèi)基本的解三角形問(wèn)題。
能力目標:引導學(xué)生通過(guò)觀(guān)察,推導,比較,由特殊到一般歸納出正弦定理,培養學(xué)生的創(chuàng )新意識和觀(guān)察與邏輯思維能力,能體會(huì )用向量作為數形結合的工具,將幾何問(wèn)題轉化為代數問(wèn)題。
情感目標:面向全體學(xué)生,創(chuàng )造平等的教學(xué)氛圍,通過(guò)學(xué)生之間、師生之間的交流、合作和評價(jià),調動(dòng)學(xué)生的主動(dòng)性和積極性,激發(fā)學(xué)生學(xué)習的興趣。
教學(xué)重點(diǎn):正弦定理的內容,正弦定理的.證明及基本應用。 教學(xué)難點(diǎn):已知兩邊和其中一邊的對角解三角形時(shí)判斷解的個(gè)數。
二、教法
根據教材的內容和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認識規律,本講遵照以教師為主導,以學(xué)生為主體,訓練為主線(xiàn)的指導思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過(guò)程中,在教師的啟發(fā)引導下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現”為基本探究?jì)热,以生活?shí)際為參照對象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。
三、學(xué)法
指導學(xué)生掌握“觀(guān)察——猜想——證明——應用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識應用于對任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習,觀(guān)察,類(lèi)比,思考,探究,概括,動(dòng)手嘗試相結合,體現學(xué)生的主體地位,增強學(xué)生由特殊到一般的數學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。
四、教學(xué)過(guò)程
(一)創(chuàng )設情境(3分鐘)
“興趣是最好的老師”,如果一節課有個(gè)好的開(kāi)頭,那就意味著(zhù)成功了一半,本節課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(cháng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(cháng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習的興趣,從而進(jìn)入今天的學(xué)習課題。
(二)猜想—推理—證明(15分鐘)
激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現正弦定理。 提問(wèn):那結論對任意三角形都適用嗎?(讓學(xué)生分小組討論,并得出猜想)
在三角形中,角與所對的邊滿(mǎn)足關(guān)系
注意:1.強調將猜想轉化為定理,需要嚴格的理論證明。
2.鼓勵學(xué)生通過(guò)作高轉化為熟悉的直角三角形進(jìn)行證明。
3.提示學(xué)生思考哪些知識能把長(cháng)度和三角函數聯(lián)系起來(lái),繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學(xué)思想。
(三)總結--應用(3分鐘)
1.正弦定理的內容,討論可以解決哪幾類(lèi)有關(guān)三角形的問(wèn)題。
2.運用正弦定理求解本節課引入的三角形零件邊長(cháng)的問(wèn)題。自己參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀(guān)。
(四)講解例題(8分鐘)
1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1簡(jiǎn)單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來(lái)解三角形。
2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中
一邊的對角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。
(五)課堂練習(8分鐘)
1.在△ABC中,已知下列條件,解三角形. (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm
2. 在△ABC中,已知下列條件,解三角形. (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°
學(xué)生板演,老師巡視,及時(shí)發(fā)現問(wèn)題,并解答。
(六)小結反思(3分鐘)
1.它表述了三角形的邊與對角的正弦值的關(guān)系。
2.定理證明分別從直角、銳角、鈍角出發(fā),運用分類(lèi)討論的思想。
3.會(huì )用向量作為數形結合的工具,將幾何問(wèn)題轉化為代數問(wèn)題。
五、教學(xué)反思
從實(shí)際問(wèn)題出發(fā),通過(guò)猜想、實(shí)驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問(wèn)題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著(zhù)結論,而且整個(gè)探索過(guò)程我們也掌握了研究問(wèn)題的一般方法。在強調研究性學(xué)習方法,注重學(xué)生的主體地位,調動(dòng)學(xué)生積極性,使數學(xué)教學(xué)成為數學(xué)活動(dòng)的教學(xué)。
高中數學(xué)說(shuō)課稿12
新課標指出,高中數學(xué)課程的教學(xué)要能提高學(xué)生的“四基、四能”,根據這一課程目標,本節課我將從教材分析、教學(xué)目標、教學(xué)過(guò)程等幾個(gè)方面來(lái)展開(kāi)我的說(shuō)課。
一、說(shuō)教材
本節課選自人教A版高中數學(xué)必修3第三章。本節課的內容是在古典概型基礎上的進(jìn)一步發(fā)展,是等可能事件的概念從有限向無(wú)限的延伸。通過(guò)本節課的學(xué)習,學(xué)生能進(jìn)一步體會(huì )實(shí)驗結果的隨機性與規律性,并體會(huì )到對事物的看法不應該持絕對化的觀(guān)點(diǎn)。
二、說(shuō)學(xué)情
高中生智力發(fā)育已趨于成熟,對于未知事物有著(zhù)很強的探究欲望,且此前古典概型的學(xué)習為本節課打下了良好的基礎。但基本事件有無(wú)數多個(gè)的發(fā)現以及此種情況下概率該如何計算,學(xué)生并不容易想到。因此我會(huì )從具體的生活、實(shí)踐問(wèn)題入手,組織學(xué)生開(kāi)展活動(dòng),在觀(guān)察、思考中抽象、概括本節課的要點(diǎn)。
三、說(shuō)教學(xué)目標
結合以上分析,我制定本節課教學(xué)目標如下:
(一)知識與技能
初步體會(huì )幾何概型的意義,掌握幾何概型的概率計算公式,并能進(jìn)行簡(jiǎn)單應用。
(二)過(guò)程與方法
在通過(guò)幾何概型特點(diǎn)概括出幾何概型概率計算公式的過(guò)程中,進(jìn)一步發(fā)展合情推理能力,學(xué)會(huì )運用數形結合的思想解決概率計算問(wèn)題。
(三)情感、態(tài)度與價(jià)值觀(guān)
通過(guò)貼近生活的素材,激發(fā)學(xué)習數學(xué)的興趣,體會(huì )用科學(xué)的態(tài)度、辯證的思想去觀(guān)察、分析、研究客觀(guān)世界。
四、說(shuō)教學(xué)重難點(diǎn)
同時(shí),本節課教學(xué)重點(diǎn)為:幾何概型的意義及概率計算公式。教學(xué)難點(diǎn)為:幾何概型概率計算公式的推導。
五、說(shuō)教法和學(xué)法
教學(xué)的一切活動(dòng)都必須以強調學(xué)生的主動(dòng)性、積極性為出發(fā)點(diǎn),根據這一教學(xué)理念,本節課我將采用講授法、自主探究法、練習法等教學(xué)方法。
六、說(shuō)教學(xué)過(guò)程
下面說(shuō)說(shuō)我的教學(xué)過(guò)程。
(一)引入新課
首先我會(huì )帶領(lǐng)學(xué)生復習確定隨機事件發(fā)生的概率的兩種方法,一是通過(guò)頻率估算概率,二是用古典概型的概率公式來(lái)計算事件發(fā)生的`概率。但古典概型是基于試驗的所有結果是有限個(gè),當試驗的所有可能結果有無(wú)窮多個(gè)時(shí),無(wú)法利用之前的方法進(jìn)行計算,進(jìn)而進(jìn)入本節課的學(xué)習。
利用復習導入,一來(lái)可以鞏固之前所學(xué),二來(lái)將等可能事件從有限拓展到無(wú)限,引發(fā)學(xué)生的認知沖突,體現出學(xué)習本節課的必要性。
(二)講解新知
接下來(lái)是新知講解。為了讓學(xué)生初步感知幾何概型的基本特點(diǎn),我會(huì )舉例:
(1)一個(gè)人到單位的時(shí)間可能是8:00~9:00之間任一時(shí)刻。
(2)往一方格中投一個(gè)石子。并請學(xué)生說(shuō)說(shuō)此人到達單位的時(shí)間點(diǎn)以及石子落在方格的哪個(gè)位置,會(huì )不會(huì )在某一時(shí)間點(diǎn)到達或落在某一位置的概率比較大。學(xué)生結合生活經(jīng)驗能夠發(fā)現,此時(shí)基本事件有無(wú)數多個(gè),且基本事件發(fā)生是等可能的。
僅僅知道特點(diǎn)還是不夠的,還要知道相應概率的求法。為了讓學(xué)生有更直觀(guān)的感知,我會(huì )出示具體問(wèn)題:如圖,甲、乙兩人玩轉盤(pán)游戲,規定當指針指向B區域時(shí),甲獲勝,否則乙獲勝。請學(xué)生思考在兩種情況下甲獲勝的概率分別是多少。
高中數學(xué)說(shuō)課稿13
各位老師:
大家好!
我叫***,來(lái)自**。我說(shuō)課的題目是《古典概型》,內容選自于高中教材新課程人教A版必修3第三章第二節,課時(shí)安排為兩個(gè)課時(shí),本節課內容為第一課時(shí)。下面我將從教材分析、教學(xué)目標分析、教法與學(xué)法分析、教學(xué)過(guò)程分析四大方面來(lái)闡述我對這節課的分析和設計:
一、教材分析
1.教材所處的地位和作用
古典概型是一種特殊的數學(xué)模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。它承接著(zhù)前面學(xué)過(guò)的隨機事件的概率及其性質(zhì),又是以后學(xué)習條件概率的基礎,起到承前啟后的作用。
2.教學(xué)的重點(diǎn)和難點(diǎn)
重點(diǎn):理解古典概型及其概率計算公式。
難點(diǎn):古典概型的判斷及把一些實(shí)際問(wèn)題轉化成古典概型。
二、教學(xué)目標分析
1.知識與技能目標
。1)通過(guò)試驗理解基本事件的概念和特點(diǎn)
。2)在數學(xué)建模的過(guò)程中,抽離出古典概型的兩個(gè)基本特征,推導出古典概型下的概率的計算公式。
2、過(guò)程與方法:
經(jīng)歷公式的推導過(guò)程,體驗由特殊到一般的數學(xué)思想方法。
3、情感態(tài)度與價(jià)值觀(guān):
。1)用具有現實(shí)意義的實(shí)例,激發(fā)學(xué)生的學(xué)習興趣,培養學(xué)生勇于探索,善于發(fā)現的創(chuàng )新思想。
。2)讓學(xué)生掌握"理論來(lái)源于實(shí)踐,并把理論應用于實(shí)踐"的辨證思想。
三、教法與學(xué)法分析
1、教法分析:根據本節課的特點(diǎn),采用引導發(fā)現和歸納概括相結合的教學(xué)方法,通過(guò)提出問(wèn)題、思考問(wèn)題、解決問(wèn)題等教學(xué)過(guò)程,觀(guān)察對比、概括歸納古典概型的概念及其概率公式,再通過(guò)具體問(wèn)題的提出和解決,來(lái)激發(fā)學(xué)生的學(xué)習興趣,調動(dòng)學(xué)生的主體能動(dòng)性,讓每一個(gè)學(xué)生充分地參與到學(xué)習活動(dòng)中來(lái)。
2、學(xué)法分析:學(xué)生在教師創(chuàng )設的問(wèn)題情景中,通過(guò)觀(guān)察、類(lèi)比、思考、探究、概括、歸納和動(dòng)手嘗試相結合,體現了學(xué)生的主體地位,培養了學(xué)生由具體到抽象,由特殊到一般的數學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度。
、鍎(chuàng )設情景、引入新課
在課前,教師布置任務(wù),以小組為單位,完成下面兩個(gè)模擬試驗:
試驗一:拋擲一枚質(zhì)地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數,要求每個(gè)數學(xué)小組至少完成20次(最好是整十數),最后由代表匯總;
試驗二:拋擲一枚質(zhì)地均勻的骰子,分別記錄"1點(diǎn)"、"2點(diǎn)"、"3點(diǎn)"、"4點(diǎn)"、"5點(diǎn)"和"6點(diǎn)"的次數,要求每個(gè)數學(xué)小組至少完成60次(最好是整十數),最后由代表匯總。
在課上,學(xué)生展示模擬試驗的操作方法和試驗結果,并與同學(xué)交流活動(dòng)感受,教師最后匯總方法、結果和感受,并提出兩個(gè)問(wèn)題。
1.用模擬試驗的方法來(lái)求某一隨機事件的概率好不好?為什么?
不好,要求出某一隨機事件的概率,需要進(jìn)行大量的試驗,并且求出來(lái)的結果是頻率,而不是概率。
2.根據以前的學(xué)習,上述兩個(gè)模擬試驗的每個(gè)結果之間都有什么特點(diǎn)?]
「設計意圖」通過(guò)課前的模擬實(shí)驗,讓學(xué)生感受與他人合作的重要性,培養學(xué)生運用數學(xué)語(yǔ)言的能力。隨著(zhù)新問(wèn)題的提出,激發(fā)了學(xué)生的求知欲望,通過(guò)觀(guān)察對比,培養了學(xué)生發(fā)現問(wèn)題的能力。
、嫠伎冀涣、形成概念
學(xué)生觀(guān)察對比得出兩個(gè)模擬試驗的相同點(diǎn)和不同點(diǎn),教師給出基本事件的概念,并對相關(guān)特點(diǎn)加以說(shuō)明,加深對新概念的理解。
[基本事件有如下的兩個(gè)特點(diǎn):
。1)任何兩個(gè)基本事件是互斥的;
。2)任何事件(除不可能事件)都可以表示成基本事件的和.]
「設計意圖」讓學(xué)生從問(wèn)題的相同點(diǎn)和不同點(diǎn)中找出研究對象的對立統一面,這能培養學(xué)生分析問(wèn)題的能力,同時(shí)也教會(huì )學(xué)生運用對立統一的辯證唯物主義觀(guān)點(diǎn)來(lái)分析問(wèn)題的一種方法。教師的注解可以使學(xué)生更好的把握問(wèn)題的關(guān)鍵。
例1從字母a、b、c、d中任意取出兩個(gè)不同字母的試驗中,有哪些基本事件?
先讓學(xué)生嘗試著(zhù)列出所有的基本事件,教師再講解用樹(shù)狀圖列舉問(wèn)題的優(yōu)點(diǎn)。
「設計意圖」將數形結合和分類(lèi)討論的思想滲透到具體問(wèn)題中來(lái)。由于沒(méi)有學(xué)習排列組合,因此用列舉法列舉基本事件的個(gè)數,不僅能讓學(xué)生直觀(guān)的感受到對象的總數,而且還能使學(xué)生在列舉的時(shí)候作到不重不漏。解決了求古典概型中基本事件總數這一難點(diǎn)
觀(guān)察對比,發(fā)現兩個(gè)模擬試驗和例1的共同特點(diǎn):
讓學(xué)生先觀(guān)察對比,找出兩個(gè)模擬試驗和例1的共同特點(diǎn),再概括總結得到的結論,教師最后補充說(shuō)明。
[經(jīng)概括總結后得到:
。1)試驗中所有可能出現的基本事件只有有限個(gè);(有限性)
。2)每個(gè)基本事件出現的可能性相等。(等可能性)
我們將具有這兩個(gè)特點(diǎn)的概率模型稱(chēng)為古典概率概型,簡(jiǎn)稱(chēng)古典概型。
「設計意圖」培養運用從具體到抽象、從特殊到一般的辯證唯物主義觀(guān)點(diǎn)分析問(wèn)題的能力,充分體現了數學(xué)的化歸思想。啟發(fā)誘導的同時(shí),訓練了學(xué)生觀(guān)察和概括歸納的能力。通過(guò)列出相同和不同點(diǎn),能讓學(xué)生很好的理解古典概型。
、缬^(guān)察分析、推導方程
問(wèn)題思考:在古典概型下,基本事件出現的概率是多少?隨機事件出現的概率如何計算?
教師提出問(wèn)題,引導學(xué)生類(lèi)比分析兩個(gè)模擬試驗和例1的概率,先通過(guò)用概率加法公式求出隨機事件的概率,再對比概率結果,發(fā)現其中的聯(lián)系,最后概括總結得出古典概型計算任何事件的概率計算公式:
「設計意圖」鼓勵學(xué)生運用觀(guān)察類(lèi)比和從具體到抽象、從特殊到一般的辯證唯物主義方法來(lái)分析問(wèn)題,同時(shí)讓學(xué)生感受數學(xué)化歸思想的優(yōu)越性和這一做法的合理性,突出了古典概型的概率計算公式這一重點(diǎn)。
提問(wèn):
。1)在例1的實(shí)驗中,出現字母"d"的概率是多少?
。2)在使用古典概型的概率公式時(shí),應該注意什么?
「設計意圖」教師提問(wèn),學(xué)生回答,深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關(guān)鍵。
、枥}分析、推廣應用
例2單選題是標準化考試中常用的.題型,一般是從A,B,c,D四個(gè)選項中選擇一個(gè)正確答案。如果考生掌握了考差的內容,他可以選擇唯一正確的答案。假設考生不會(huì )做,他隨機的選擇一個(gè)答案,問(wèn)他答對的概率是多少?
學(xué)生先思考再回答,教師對學(xué)生沒(méi)有注意到的關(guān)鍵點(diǎn)加以說(shuō)明。
「設計意圖」讓學(xué)生明確決概率的計算問(wèn)題的關(guān)鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個(gè)數和試驗中基本事件的總數。鞏固學(xué)生對已學(xué)知識的掌握。
例3同時(shí)擲兩個(gè)骰子,計算:
。1)一共有多少種不同的結果?
。2)其中向上的點(diǎn)數之和是5的結果有多少種?
。3)向上的點(diǎn)數之和是5的概率是多少?
先給出問(wèn)題,再讓學(xué)生完成,然后引導學(xué)生分析問(wèn)題,發(fā)現解答中存在的問(wèn)題。引導學(xué)生用列表來(lái)列舉試驗中的基本事件的總數。
「設計意圖」利用列表數形結合和分類(lèi)討論,既能形象直觀(guān)地列出基本事件的總數,又能做到列舉的不重不漏。深化鞏固對古典概型及其概率計算公式的理解。培養學(xué)生運用數形結合的思想,提高發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力,增強學(xué)生數學(xué)思維情趣,形成學(xué)習數學(xué)知識的積極態(tài)度。
、樘骄克枷、鞏固深化
問(wèn)題思考:為什么要把兩個(gè)骰子標上記號?如果不標記號會(huì )出現什么情況?你能解釋其中的原因嗎?
要求學(xué)生觀(guān)察對比兩種結果,找出問(wèn)題產(chǎn)生的原因。
「設計意圖」通過(guò)觀(guān)察對比,發(fā)現兩種結果不同的根本原因是--研究的問(wèn)題是否滿(mǎn)足古典概型,從而再次突出了古典概型這一教學(xué)重點(diǎn),體現了學(xué)生的主體地位,逐漸養成自主探究能力。
、昕偨Y概括、加深理解
1.基本事件的特點(diǎn)
2.古典概型的特點(diǎn)
3.古典概型的概率計算公式
學(xué)生小結歸納,不足的地方老師補充說(shuō)明。
「設計意圖」使學(xué)生對本節課的知識有一個(gè)系統全面的認識,并把學(xué)過(guò)的相關(guān)知識有機地串聯(lián)起來(lái),便于記憶和應用,也進(jìn)一步升華了這節課所要表達的本質(zhì)思想,讓學(xué)生的認知更上一層。
、氩贾米鳂I(yè)
課本練習1、2、3
「設計意圖」進(jìn)一步讓學(xué)生掌握古典概型及其概率公式,并能夠學(xué)以致用,加深對本節課的理解。
高中數學(xué)說(shuō)課稿14
一、教材分析
1.教材所處的地位和作用
在學(xué)習了隨機事件、頻率、概率的意義和性質(zhì)及用概率解決實(shí)際問(wèn)題和古典概型的概念后,進(jìn)一步體會(huì )用頻率估計概率思想。它是對古典概型問(wèn)題的一種模擬,也是對古典概型知識的深化,同時(shí)它也是為了更廣泛、高效地解決一些實(shí)際問(wèn)題、體現信息技術(shù)的優(yōu)越性而新增的內容。
2.教學(xué)的重點(diǎn)和難點(diǎn)
重點(diǎn):正確理解隨機數的概念,并能應用計算器或計算機產(chǎn)生隨機數。
難點(diǎn):建立概率模型,應用計算器或計算機來(lái)模擬試驗的方法近似計算概率,解決一些較簡(jiǎn)單的現實(shí)問(wèn)題。
二、教學(xué)目標分析
1、知識與技能:
(1)了解隨機數的概念;
(2)利用計算機產(chǎn)生隨機數,并能直接統計出頻數與頻率。
2、過(guò)程與方法:
(1)通過(guò)對現實(shí)生活中具體的概率問(wèn)題的探究,感知應用數學(xué)解決問(wèn)題的方法,體會(huì )數學(xué)知識與現實(shí)世界的聯(lián)系,培養邏輯推理能力;
(2)通過(guò)模擬試驗,感知應用數字解決問(wèn)題的方法,自覺(jué)養成動(dòng)手、動(dòng)腦的良好習慣
3、情感態(tài)度與價(jià)值觀(guān):
通過(guò)數學(xué)與探究活動(dòng),體會(huì )理論來(lái)源于實(shí)踐并應用于實(shí)踐的辯證唯物主義觀(guān)點(diǎn).
三、教學(xué)方法與手段分析
1、教學(xué)方法:本節課我主要采用啟發(fā)探究式的教學(xué)模式。
2、教學(xué)手段:利用多媒體技術(shù)優(yōu)化課堂教學(xué)
四、教學(xué)過(guò)程分析
、鍎(chuàng )設情境、引入新課
情境1:假設你作為一名食品衛生工作人員,要對某超市內的80袋小包裝餅干中抽取10袋進(jìn)行衛生達標檢驗,你打算如何操作?
預設學(xué)生回答:
、挪捎煤(jiǎn)單隨機抽樣方法(抽簽法)
、撇捎煤(jiǎn)單隨機抽樣方法(隨機數表法)
教師總結得出:隨機數就是在一定范圍內隨機產(chǎn)生的數,并且得到這個(gè)范圍內每一數的機會(huì )一樣。(引入課題)
「設計意圖」(1)回憶統計知識中利用隨機抽樣方法如抽簽法、隨機數表法等進(jìn)行抽樣的步驟和特征;(2)從具體試驗中了解隨機數的含義。
情境2:在拋硬幣和擲骰子的試驗中,是用頻率估計概率。假如現在要作10000次試驗,你打算怎么辦?大家可能覺(jué)得這樣做試驗花費時(shí)間太多了,有沒(méi)有其他方法可以代替試驗呢?
「設計意圖」當需要隨機數的量很大時(shí),用手工試驗產(chǎn)生隨機數速度太慢,從而說(shuō)明利用現代信息技術(shù)的重要性,體現利用計算器或計算機產(chǎn)生隨機數的必要性。
、娌僮鲗(shí)踐、了解新知
教師:向學(xué)生介紹計算器的操作,讓他們了解隨機函數的原理?墒孪染幹茙讉(gè)小問(wèn)題,在課堂上帶著(zhù)學(xué)生用計算器(科學(xué)計算器或圖形計算器)操作一遍,讓學(xué)生熟悉如何用計算器產(chǎn)生隨機數。
「設計意圖」通過(guò)操作熟悉計算器操作流程,在明白原理后,通過(guò)讓學(xué)生自己按照規則操作,熟悉計算器產(chǎn)生隨機數的操作流程,了解隨機數。
問(wèn)題1:拋一枚質(zhì)地均勻的硬幣出現正面向上的概率是50,你能設計一種利用計算器模擬擲硬幣的.試驗來(lái)驗證這個(gè)結論嗎?
思考:隨著(zhù)模擬次數的不同,結果是否有區別,為什么?
「設計意圖」⑴設計概率模型是解決概率問(wèn)題的難點(diǎn),也是能解決概率問(wèn)題的關(guān)鍵,是數學(xué)建模的第一步。⑵拋硬幣是最熟悉、最簡(jiǎn)單的問(wèn)題,很自然會(huì )想到把正面向上、反面向上這兩個(gè)基本事件用兩個(gè)隨機數來(lái)代替。(題目讓學(xué)生通過(guò)熟悉50想到用隨機數0,1來(lái)模擬,為后面問(wèn)題4每天下雨的概率為40的概率建模作第一次小鋪墊。)⑶熟悉利用計算器模擬試驗的操作流程,為解決后面例題模擬下雨作好鋪墊。
問(wèn)題2:(1)剛才我們利用了計算器來(lái)產(chǎn)生隨機數,我們知道計算機有許多軟件有統計功能,你知道哪些軟件具有隨機函數這個(gè)功能?
(2)你會(huì )利用統計軟件Excel來(lái)產(chǎn)生隨機數0,1嗎?你能設計一種利用計算機模擬擲硬幣的試驗嗎?
「設計意圖」⑴了解有許多統計軟件都有隨機函數這個(gè)功能,并與前面第一章所學(xué)的用程序語(yǔ)言編寫(xiě)程序相聯(lián)系;⑵Excel是學(xué)生比較熟悉的統計軟件,也可讓學(xué)生回顧初中用Excel畫(huà)統計圖的一些功能和知識,其次讓學(xué)生掌握多種隨機模擬試驗方法。
問(wèn)題3:(1)你能在Excel軟件中畫(huà)試驗次數從1到100次的頻率分布折線(xiàn)圖嗎?
(2)當試驗次數為1000,1500時(shí),你能說(shuō)說(shuō)出現正面向上的頻率有些什么變化?
「設計意圖」⑴應用隨機模擬方法估計古典概型中隨機事件的概率值;
、企w會(huì )頻率的隨機性與相對穩定性,經(jīng)歷用計算機產(chǎn)生數據,整理數據,分析數據,畫(huà)統計圖的全過(guò)程,使學(xué)生相信統計結果的真實(shí)性、隨機性及規律性。
、缰v練結合、鞏固新知
問(wèn)題4:天氣預報說(shuō),在今后的三天中,每一天下雨的概率均為40,這三天中恰有兩天下雨的概率是多少?
問(wèn)1:能用古典概型的計算公式求解嗎?
你能說(shuō)明一下這為什么不是古典概型嗎?
問(wèn)2:你如何模擬每一天下雨的概率為40?
「設計意圖」⑴問(wèn)題分層提出,降低本題難度。如何模擬每一天下雨的概率40是解決這道題的關(guān)鍵,是隨機模擬方法應用的重點(diǎn),也是難點(diǎn)之一。
、旗柟逃秒S機模擬方法估計未知量的基本思想,明確利用隨機模擬方法也可解決不是古典概型而比較復雜的概率應用題。
歸納步驟:第一步,設計概率模型;
第二步,進(jìn)行模擬試驗;
方法一:(隨機模擬方法--計算器模擬)利用計算器隨機函數;
方法二:(隨機模擬方法--計算機模擬)
第三步,統計試驗的結果。
課堂檢測將一枚質(zhì)地均勻的硬幣連擲三次,出現"2個(gè)正面朝上、1個(gè)反面朝上"和"1個(gè)正面朝上、2個(gè)反面朝上"的概率各是多少?并用隨機模擬的方法做100次試驗,計算各自的頻數。
「設計意圖」通過(guò)練習,進(jìn)一步鞏固學(xué)生對本節課知識的掌握。
、铓w納小結
(1)你能歸納利用隨機模擬方法估計概率的步驟嗎?
(2)你能體會(huì )到隨機模擬的優(yōu)勢嗎?請舉例說(shuō)說(shuō)。
「設計意圖」⑴通過(guò)問(wèn)題的思考和解決,使學(xué)生理解模擬方法的優(yōu)點(diǎn),并充分利用信息技術(shù)的優(yōu)勢;⑵是對知識的進(jìn)一步理解與思考,又是對本節內容的回顧與總結。
、椴贾镁毩暎
課本練習3、4
「設計意圖」課后作業(yè)的布置是為了檢驗學(xué)生對本節課內容的理解和運用程度,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內容。
[內容結束]
高中數學(xué)說(shuō)課稿15
大家好,今天我向大家說(shuō)課的題目是《正弦定理》。下面我將從以下幾個(gè)方面介紹我這堂課的教學(xué)設計。
一 教材分析
本節知識是必修五第一章《解三角形》的第一節內容,與初中學(xué)習的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,而且解三角形和三角函數聯(lián)系在高考當中也時(shí)?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。
根據上述教材內容分析,考慮到學(xué)生已有的認知結構心理特征及原有知識水平,制定如下教學(xué)目標:
認知目標:在創(chuàng )設的問(wèn)題情境中,引導學(xué)生發(fā)現正弦定理的內容,推證正弦定理及簡(jiǎn)單運用正弦定理與三角形的內角和定理解斜三角形的兩類(lèi)問(wèn)題。
能力目標:引導學(xué)生通過(guò)觀(guān)察,推導,比較,由特殊到一般歸納出正弦定理,培養學(xué)生的創(chuàng )新意識和觀(guān)察與邏輯思維能力,能體會(huì )用向量作為數形結合的工具,將幾何問(wèn)題轉化為代數問(wèn)題。
情感目標:面向全體學(xué)生,創(chuàng )造平等的教學(xué)氛圍,通過(guò)學(xué)生之間、師生之間的交流、合作和評價(jià),調動(dòng)學(xué)生的主動(dòng)性和積極性,給學(xué)生成功的體驗,激發(fā)學(xué)生學(xué)習的興趣。
教學(xué)重點(diǎn):正弦定理的內容,正弦定理的'證明及基本應用。
教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時(shí)判斷解的個(gè)數。
二 教法
根據教材的內容和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認識規律,本講遵照以教師為主導,以學(xué)生為主體,訓練為主線(xiàn)的指導思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過(guò)程中,在教師的啟發(fā)引導下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現”為基本探究?jì)热,以生活?shí)際為參照對象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點(diǎn)的手段:抓住學(xué)生情感的興奮點(diǎn),激發(fā)他們的興趣,鼓勵學(xué)生大膽猜想,積極探索,以及及時(shí)地鼓勵,使他們知難而進(jìn)。另外,抓知識選擇的切入點(diǎn),從學(xué)生原有的認知水平和所需的知識特點(diǎn)入手,教師在學(xué)生主體下給以適當的提示和指導。突破難點(diǎn)的方法:抓住學(xué)生的能力線(xiàn)聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外通過(guò)例題和練習來(lái)突破難點(diǎn)
三 學(xué)法:
指導學(xué)生掌握“觀(guān)察——猜想——證明——應用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識應用于對任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習,觀(guān)察,類(lèi)比,思考,探究,概括,動(dòng)手嘗試相結合,體現學(xué)生的主體地位,增強學(xué)生由特殊到一般的數學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。
四 教學(xué)過(guò)程
第一:創(chuàng )設情景,大概用2分鐘
第二:實(shí)踐探究,形成概念,大約用25分鐘
第三:應用概念,拓展反思,大約用13分鐘
。ㄒ唬﹦(chuàng )設情境,布疑激趣
“興趣是最好的老師”,如果一節課有個(gè)好的開(kāi)頭,那就意味著(zhù)成功了一半,本節課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(cháng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(cháng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習的興趣,從而進(jìn)入今天的學(xué)習課題。
。ǘ┨綄ぬ乩,提出猜想
1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現正弦定理。
2.那結論對任意三角形都適用嗎?指導學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進(jìn)行驗證。
3.讓學(xué)生總結實(shí)驗結果,得出猜想:
在三角形中,角與所對的邊滿(mǎn)足關(guān)系
這為下一步證明樹(shù)立信心,不斷的使學(xué)生對結論的認識從感性逐步上升到理性。
。ㄈ┻壿嬐评,證明猜想
1.強調將猜想轉化為定理,需要嚴格的理論證明。
2.鼓勵學(xué)生通過(guò)作高轉化為熟悉的直角三角形進(jìn)行證明。
3.提示學(xué)生思考哪些知識能把長(cháng)度和三角函數聯(lián)系起來(lái),繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學(xué)思想。
4.思考是否還有其他的方法來(lái)證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來(lái)證明
。ㄋ模w納總結,簡(jiǎn)單應用
1.讓學(xué)生用文字敘述正弦定理,引導學(xué)生發(fā)現定理具有對稱(chēng)和諧美,提升對數學(xué)美的享受。
2.正弦定理的內容,討論可以解決哪幾類(lèi)有關(guān)三角形的問(wèn)題。
3.運用正弦定理求解本節課引引入的三角形零件邊長(cháng)的問(wèn)題。自己參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀(guān)。
。ㄎ澹┲v解例題,鞏固定理
1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1簡(jiǎn)單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來(lái)解三角形。
2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
【高中數學(xué)說(shuō)課稿】相關(guān)文章:
高中數學(xué)經(jīng)典說(shuō)課稿07-11
高中數學(xué)的說(shuō)課稿07-11
高中數學(xué)說(shuō)課稿05-03
高中數學(xué)統計說(shuō)課稿07-11
高中數學(xué)向量說(shuō)課稿07-11
高中數學(xué)數列說(shuō)課稿07-11
高中數學(xué)說(shuō)課稿11-14
高中數學(xué)說(shuō)課稿08-26