97骚碰,毛片大片免费看,亚洲第一天堂,99re思思,色好看在线视频播放,久久成人免费大片,国产又爽又色在线观看

高中數學(xué)說(shuō)課稿

時(shí)間:2023-01-10 18:28:09 數學(xué)說(shuō)課稿 我要投稿

【熱門(mén)】高中數學(xué)說(shuō)課稿

  作為一名教師,就不得不需要編寫(xiě)說(shuō)課稿,寫(xiě)說(shuō)課稿能有效幫助我們總結和提升講課技巧。那么大家知道正規的說(shuō)課稿是怎么寫(xiě)的嗎?以下是小編為大家整理的高中數學(xué)說(shuō)課稿,歡迎閱讀與收藏。

【熱門(mén)】高中數學(xué)說(shuō)課稿

高中數學(xué)說(shuō)課稿1

  我今天說(shuō)課的課題是新課標高中數學(xué)人教版A版必修第二冊第三章“3.1.1傾斜角與斜率”。我說(shuō)課的程序主要由說(shuō)教材、說(shuō)教法、說(shuō)學(xué)法、說(shuō)教學(xué)程序這四個(gè)部分組成。

  一、說(shuō)教材:

  1、教材分析:直線(xiàn)的傾斜角和斜率是解析幾何的重要概念之一,也是直線(xiàn)的重要的幾何要素。學(xué)生在原有的對直線(xiàn)的有關(guān)性質(zhì)及平面向量的相關(guān)知識理解的基礎上,重新以坐標化(解析化)的方式來(lái)研究直線(xiàn)相關(guān)性質(zhì),而本節直線(xiàn)的傾斜角與斜率,是直線(xiàn)的重要的幾何性質(zhì),是研究直線(xiàn)的方程形式,直線(xiàn)的位置關(guān)系等的思維的起點(diǎn);另外,本節也初步向學(xué)生滲透解析幾何的基本思想和基本方法。因此,本節課的有著(zhù)開(kāi)啟全章,奠定基調,滲透方法,明確方向,承前啟后的作用。

  2、教學(xué)目標

  根據本課教材的特點(diǎn),新大綱對本節課的教學(xué)要求,結合學(xué)生身心發(fā)展的合理需要,我從三個(gè)方面確定了以下教學(xué)目標:

 。1)知識與技能目標:

  了解直線(xiàn)的方程和方程的直線(xiàn)的概念;在新的問(wèn)題的情境中,去主動(dòng)構建理解直線(xiàn)的傾斜角和斜率的定義;初步感悟用代數方法解決幾何問(wèn)題的思想方法。

 。2)過(guò)程與方法目標:

  引導學(xué)生觀(guān)察發(fā)現、類(lèi)比,猜想和實(shí)驗探索,培養學(xué)生的創(chuàng )新能力和動(dòng)手能力

 。3)情感、態(tài)度與價(jià)值觀(guān)目標:

  在平等的教學(xué)氛圍中,通過(guò)學(xué)生之間、師生之間的交流、合作和評價(jià),實(shí)現共同探究、教學(xué)相長(cháng)的教學(xué)情境。

  3、教學(xué)重點(diǎn)、難點(diǎn)

 。1)教學(xué)重點(diǎn):理解直線(xiàn)的傾斜角和斜率的概念,經(jīng)歷用代數方法刻畫(huà)直線(xiàn)斜率的過(guò)程,掌握過(guò)兩點(diǎn)的直線(xiàn)的斜率的計算公式。

 。2)教學(xué)難點(diǎn):斜率公式的推導

  二、說(shuō)教法

  課堂教學(xué)應有利于學(xué)生的數學(xué)素質(zhì)的形成與發(fā)展,即在課堂教學(xué)過(guò)程中,創(chuàng )設問(wèn)題的情境,激發(fā)學(xué)生主動(dòng)的發(fā)現問(wèn)題解決問(wèn)題,充分調動(dòng)學(xué)生學(xué)習的主動(dòng)性、積極性;有效地滲透數學(xué)思想方法,發(fā)展學(xué)生個(gè)性思維品質(zhì),這是本節課的教學(xué)原則。根據這樣的原則及所要完成的教學(xué)目標,我采用觀(guān)察發(fā)現、啟發(fā)引導、探索實(shí)驗相結合的教學(xué)方法。啟發(fā)引導學(xué)生積極的思考并對學(xué)生的思維進(jìn)行調控,使學(xué)生優(yōu)化思維過(guò)程;在此基礎上,通過(guò)學(xué)生交流與合作,從而擴展自已的數學(xué)知識和使用數學(xué)知識及數學(xué)工具的能力,實(shí)現自覺(jué)地、主動(dòng)地、積極地學(xué)習。

  三、說(shuō)學(xué)法

  在實(shí)際教學(xué)中,根據學(xué)生對問(wèn)題的感受程度不同,學(xué)習熱情、身心特點(diǎn)等,對學(xué)生進(jìn)行針對性的學(xué)法指導。主要運用引導、啟發(fā)、情感暗示等隱性形式來(lái)影響學(xué)生,多提供機會(huì )讓學(xué)生去想、去做,給學(xué)生自己動(dòng)手、參與教學(xué)過(guò)程、發(fā)現問(wèn)題、討論問(wèn)題提供了很好的機會(huì )。這不僅讓學(xué)生對所學(xué)內容留下了深刻的印象,而且能力得到培養,素質(zhì)得以提高,充分地調動(dòng)學(xué)生學(xué)習的熱情,讓學(xué)生學(xué)會(huì )學(xué)習,學(xué)會(huì )探索問(wèn)題的方法,培養學(xué)生的能力。

  四、說(shuō)教學(xué)程序:

  1、導入新課:

  提出問(wèn)題:如何確定一條直線(xiàn)的位置?

 。1)兩點(diǎn)確定一條直線(xiàn);

 。2)一點(diǎn)能確定一條直線(xiàn)嗎?

  過(guò)一點(diǎn)P可以作無(wú)數條直線(xiàn),這些直線(xiàn)的傾斜程度不同,如何描述直線(xiàn)的傾斜程度?本節課將解決這個(gè)問(wèn)題。

  設計意圖:打開(kāi)了學(xué)生的原有認知結構,為知識的創(chuàng )新做好了準備;同時(shí)也讓學(xué)生領(lǐng)會(huì )到,直線(xiàn)的傾斜角這一概念的產(chǎn)生是因為研究直線(xiàn)的需要,從而明確新課題研究的必要性,觸發(fā)學(xué)生積極思維活動(dòng)的展開(kāi)。

  2、探究發(fā)現:

 。1)直線(xiàn)的傾斜角:

  有新課導入直接引出此概念,學(xué)生易于接受,但是容易忽視其中的重點(diǎn)字。因此重點(diǎn)強調定義的幾個(gè)注意點(diǎn):①x軸正半軸;②直線(xiàn)向上方向;③當直線(xiàn)與x軸平行或重合時(shí),直線(xiàn)的傾斜角為0度。由此得出直線(xiàn)傾斜角的取值范圍。

 。2)直線(xiàn)的確定方法:

  確定平面直角坐標系中一條直線(xiàn)位置的幾何要素:直線(xiàn)上的一個(gè)定點(diǎn)以及它的傾斜角,二者缺一不可。

 。3)直線(xiàn)的斜率:

  注:直線(xiàn)的傾斜角與斜率的區別:

  所有的直線(xiàn)都有傾斜角;但是不是所有直線(xiàn)都有斜率(傾斜角為90°的直線(xiàn)沒(méi)有斜率,因為90°的正切不存在。)

  (4)由兩點(diǎn)確定的直線(xiàn)的斜率:

  先讓學(xué)生自主探究、學(xué)生之間互相交流,然后再由師生共同歸納得出結論:

  經(jīng)過(guò)兩點(diǎn)P1(x1.y1),P2(x2,y2)直線(xiàn)的斜率公式:(x1≠x2)。

  3、學(xué)用結合:

 。1)例題講解:P89-90/例題1和例題2。

  例題的講解主要關(guān)注思路的點(diǎn)撥以及解題過(guò)程的規范書(shū)寫(xiě)。

 。2)課堂練習:

  P91/練習第1、2題

  4、總結歸納:

  直線(xiàn)的傾斜角直線(xiàn)的斜率直線(xiàn)的斜率公式

  定義

  取值范圍

  5、布置作業(yè):P 91/練習第3、4題。

高中數學(xué)說(shuō)課稿2

  一、教學(xué)目標

 。1)知識與能力目標:學(xué)習橢圓的定義,掌握橢圓標準方程的兩種形式及其推

  導過(guò)程;能根據條件確定橢圓的標準方程,掌握用待定系數法求橢圓的標準方程。

 。2)過(guò)程與方法目標:通過(guò)對橢圓概念的引入教學(xué),培養學(xué)生的觀(guān)察能力和探

  索能力;通過(guò)對橢圓標準方程的推導,使學(xué)生進(jìn)一步掌握求曲線(xiàn)方程的一般方法,提高學(xué)生運用坐標法解決幾何問(wèn)題的能力,并滲透數形結合和等價(jià)轉化的數學(xué)思想方法。

 。3)情感、態(tài)度與價(jià)值觀(guān)目標:通過(guò)讓學(xué)生大膽探索橢圓的定義和標準方程,激發(fā)學(xué)生學(xué)習數學(xué)的積極性,培養學(xué)生的學(xué)習興趣和創(chuàng )新意識,培養學(xué)生勇于探索的精神和滲透辯證唯物主義的方法論和認識論。

  二、教學(xué)重點(diǎn)、難點(diǎn)

 。1)教學(xué)重點(diǎn):橢圓的定義及橢圓標準方程,用待定系數法和定義法求曲線(xiàn)方程。

 。2)教學(xué)難點(diǎn):橢圓標準方程的建立和推導。

  三、教學(xué)過(guò)程

  (一)創(chuàng )設情境,引入概念

  1、動(dòng)畫(huà)演示,描繪出橢圓軌跡圖形。

  2、實(shí)驗演示。

  思考:橢圓是滿(mǎn)足什么條件的點(diǎn)的軌跡呢?

  (二)實(shí)驗探究,形成概念

  1、動(dòng)手實(shí)驗:學(xué)生分組動(dòng)手畫(huà)出橢圓。

  實(shí)驗探究:

  保持繩長(cháng)不變,改變兩個(gè)圖釘之間的距離,畫(huà)出的橢圓有什么變化?

  思考:根據上面探究實(shí)踐回答,橢圓是滿(mǎn)足什么條件的點(diǎn)的軌跡?

  2、概括橢圓定義

  引導學(xué)生概括橢圓定義橢圓定義:平面內與兩個(gè)定點(diǎn)距離的和等于常數(大于)的點(diǎn)的軌跡叫橢圓。

  教師指出:這兩個(gè)定點(diǎn)叫橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫橢圓的焦距。

  思考:焦點(diǎn)為的橢圓上任一點(diǎn)M,有什么性質(zhì)?

  令橢圓上任一點(diǎn)M,則有

  (三)研討探究,推導方程

  1、知識回顧:利用坐標法求曲線(xiàn)方程的一般方法和步驟是什么?

  2、研討探究

  問(wèn)題:如圖已知焦點(diǎn)為的橢圓,且=2c,對橢圓上任一點(diǎn)M,有

  ,嘗試推導橢圓的方程。

  思考:如何建立坐標系,使求出的方程更為簡(jiǎn)單?

  將各組學(xué)生的討論方案歸納起來(lái)評議,選定以下兩種方案,由各組學(xué)生自己完成設點(diǎn)、列式、化簡(jiǎn)。

  方案一方案二

  按方案一建立坐標系,師生研討探究得到橢圓標準方程

  =1(),其中b2=a2-c2(b>0);

  選定方案二建立坐標系,由學(xué)生完成方程化簡(jiǎn)過(guò)程,可得出=1,同樣也有a2-c2=b2(b>0)。

  教師指出:我們所得的兩個(gè)方程=1和=1()都是橢圓的標準方程。

  (四)歸納概括,方程特征

  1、觀(guān)察橢圓圖形及其標準方程,師生共同總結歸納

 。1)橢圓標準方程對應的橢圓中心在原點(diǎn),以焦點(diǎn)所在軸為坐標軸;

 。2)橢圓標準方程形式:左邊是兩個(gè)分式的平方和,右邊是1;

 。3)橢圓標準方程中三個(gè)參數a,b,c關(guān)系:;

 。4)橢圓焦點(diǎn)的位置由標準方程中分母的大小確定;

 。5)求橢圓標準方程時(shí),可運用待定系數法求出a,b的值。

  2、在歸納總結的基礎上,填下表

  標準方程

  圖形a,b,c關(guān)系焦點(diǎn)坐標焦點(diǎn)位置

  在x軸上

  在y軸上

  (五)例題研討,變式精析

  例1、求適合下列條件的橢圓的標準方程

 。1)兩個(gè)焦點(diǎn)的坐標分別是,橢圓上一點(diǎn)P到兩焦點(diǎn)距離和等于10。

 。2)兩焦點(diǎn)坐標分別是,并且橢圓經(jīng)過(guò)點(diǎn)。

  例2、(1)若橢圓標準方程為及焦點(diǎn)坐標。

 。2)若橢圓經(jīng)過(guò)兩點(diǎn)求橢圓標準方程。

 。3)若橢圓的一個(gè)焦點(diǎn)是,則k的值為。

 。ˋ)(B)8(C)(D)32

  例3、如圖,已知一個(gè)圓的圓心為坐標原點(diǎn),半徑為2,從這個(gè)圓上任意一點(diǎn)P向x軸作垂線(xiàn)段,求線(xiàn)段中點(diǎn)M的軌跡。

  (六)變式訓練,探索創(chuàng )新

  1、寫(xiě)出適合下列條件的橢圓標準方程

 。1),焦點(diǎn)在x軸上;

 。2)焦點(diǎn)在x軸上,焦距等于4,并且經(jīng)過(guò)點(diǎn)P;

  2、若方程表示焦點(diǎn)在y軸上的橢圓,則k的范圍。

  3、已知B,C是兩個(gè)定點(diǎn),周長(cháng)為16,求頂點(diǎn)A的軌跡方程。

  4、已知橢圓的焦距相等,求實(shí)數m的值。

  5、在橢圓上上求一點(diǎn),使它與兩個(gè)焦點(diǎn)連線(xiàn)互相垂直。

  6、已知P是橢圓上一點(diǎn),其中為其焦點(diǎn)且,求三解形面積。

  (七)小結歸納,提高認識

  師生共同歸納本節所學(xué)內容、知識規律以及所學(xué)的數學(xué)思想和方法。

  (八)作業(yè)訓練,鞏固提高

  課本第96頁(yè)習題§8。1第3題、第5題、第6題。

  課后思考題:

  1、知是橢圓的兩個(gè)焦點(diǎn),AB是過(guò)的弦,則周長(cháng)是。

 。ˋ)2a(B)4a(C)8a(D)2a2b

  2、的兩個(gè)頂點(diǎn)A,B的坐標分別是邊AC,BC所在直線(xiàn)的斜

  率之積等于,求頂點(diǎn)C的軌跡方程。

  2、與圓外切,同時(shí)與圓內切,求動(dòng)圓圓心的軌跡方程,并說(shuō)明它是什么樣的曲線(xiàn)?

  教學(xué)設計說(shuō)明

  橢圓是圓錐曲線(xiàn)中重要的一種,本節內容的學(xué)習是后繼學(xué)習其它圓錐曲線(xiàn)的基礎,坐標法是解析幾何中的重要數學(xué)方法,橢圓方程的推導是利用坐標法求曲線(xiàn)方程的很好應用實(shí)例。本節課內容的學(xué)習能很好地在課堂教學(xué)中展現新課程的理念,主要采用學(xué)生自主探究學(xué)習的方式,使培養學(xué)生的探索精神和創(chuàng )新能力的教學(xué)思想貫穿于本節課教學(xué)設計的始終。

  橢圓是生活中常見(jiàn)的圖形,通過(guò)實(shí)驗演示,創(chuàng )設生動(dòng)而直觀(guān)的情境,使學(xué)生親身體會(huì )橢圓與生活聯(lián)系,有助于激發(fā)學(xué)生對橢圓知識的學(xué)習興趣;在橢圓概念引入的過(guò)程中,改變了直接給出橢圓概念和動(dòng)畫(huà)畫(huà)出橢圓的方式,而采用學(xué)生動(dòng)手畫(huà)橢圓并合作探究的學(xué)習方式,讓學(xué)生親身經(jīng)歷橢圓概念形成的數學(xué)化過(guò)程,有利于培養學(xué)生觀(guān)察分析、抽象概括的能力。

  橢圓方程的化簡(jiǎn)是學(xué)生從未經(jīng)歷的問(wèn)題,方程的推導過(guò)程采用學(xué)生分組探究,師生共同研討方程的化簡(jiǎn)和方程的特征,可以讓學(xué)生主體參與橢圓方程建立的具體過(guò)程,使學(xué)生真正了解橢圓標準方程的來(lái)源,并在這種師生嘗試探究、合作討論的活動(dòng)中,使學(xué)生體會(huì )成功的快樂(lè ),提高學(xué)生的數學(xué)探究能力,培養學(xué)生獨立主動(dòng)獲取知識的能力。

  設計例題、習題的研討探究變式訓練,是為了讓學(xué)生能靈活地運用橢圓的知識解決問(wèn)題,同時(shí)也是為了更好地調動(dòng)、活躍學(xué)生的思維,發(fā)展學(xué)生數學(xué)思維能力,讓學(xué)生在解決問(wèn)題中發(fā)展學(xué)生的數學(xué)應用意識和創(chuàng )新能力,同時(shí)培養學(xué)生大膽實(shí)踐、勇于探索的精神,開(kāi)闊學(xué)生知識應用視野。

高中數學(xué)說(shuō)課稿3

  一.內容和內容分析

  “函數的奇偶性”是人教版數學(xué)必修教材必修一第一章第三節的內容,本節的主要內容是研究函數的一個(gè)性質(zhì)—函數的奇偶性,學(xué)習奇函數和偶函數的概念.奇偶性是函數的一條重要性質(zhì),教材從學(xué)生熟悉的兩個(gè)特殊函數入手,從特殊到一般,從具體到抽象,從感性到理性比較系統地介紹了函數的奇偶性.從知識結構看,它既是函數概念的拓展和深化,又為后續研究指數函數、對數函數、冪函數、三角函數的基礎,因此,本節課起著(zhù)承上啟下的重要作用。 本節課的教學(xué)重點(diǎn):函數奇偶性的概念及判定。

  二.目標和目標分析

 。1)知識目標:從形和數兩個(gè)方面進(jìn)行引導,使學(xué)生理解奇偶性的概念,學(xué)會(huì )利用定義判斷

  簡(jiǎn)單函數的奇偶性。

 。2)能力目標:通過(guò)設置問(wèn)題情境培養學(xué)生判斷、推理的能力,同時(shí)滲透數形結合和由特殊

  到一般的數學(xué)思想方法.

 。3)情感目標:在學(xué)生感受數學(xué)美的同時(shí),激發(fā)學(xué)習的興趣,培養學(xué)生樂(lè )于求索的精神。

  三.教學(xué)問(wèn)題診斷分析

  導入有點(diǎn)慢,講的有點(diǎn)細,導致時(shí)間上沒(méi)有完成教學(xué)任務(wù),感覺(jué)還是自己講的太多,不能充分調動(dòng)學(xué)生的積極性。

  四.教學(xué)支持條件分析

  用了多媒體,使用ppt,使得奇偶性函數概念的探究過(guò)程更形象更直觀(guān),是學(xué)生理解更深刻。

  五.教學(xué)過(guò)程設計

  為了達到預期的教學(xué)目標,我對整個(gè)教學(xué)過(guò)程進(jìn)行了系統地規劃,設計了四個(gè)主要的教學(xué)程序是:

  1.設疑導入、觀(guān)圖激趣:

  使用幻燈片展示圖片蝴蝶、雪花等讓學(xué)生感受生活中的美,從而引入對稱(chēng)在函數中的體現。

  2.指導觀(guān)察、形成概念:

  作出函數y=x的圖象,并觀(guān)察這兩個(gè)函數圖象的對稱(chēng)性如何?

  借助課件演示,讓學(xué)生分別計算f(1),f(-1),f(2),f(-2),學(xué)生很快會(huì )得到f(-1)=f(1),f(-2)=f(2),進(jìn)而提出在定義域內是否對所有的x,都有類(lèi)似的情況?借助課件演示,學(xué)生會(huì )得出結論,f(-x)=f(x),從而引導學(xué)生先把它們具體化,再用數學(xué)符號表示。根據以上特點(diǎn),請學(xué)生用完整的語(yǔ)言敘述定義,同時(shí)給出板書(shū):

  函數f(x)的定義域為A,且關(guān)于原點(diǎn)對稱(chēng),如果有f(-x)=f(x),則稱(chēng)f(x)為偶函數,類(lèi)比探究2

  偶函數的過(guò)程,得到奇函數的概念,又通過(guò)具體的例子說(shuō)明了定義域關(guān)于原點(diǎn)對稱(chēng)是研究奇偶性的前提。

  3.學(xué)生探索、發(fā)展思維。

  接著(zhù)通過(guò)學(xué)案上的例一,總結函數奇偶性的判斷方法及步驟:

  (1)求出函數的定義域,并判斷是否關(guān)于原點(diǎn)對稱(chēng)

  (2)驗證f(-x)=f(x)或f(-x)=-f(x)

  (3)得出結論

  由學(xué)生小結判斷奇偶性的步驟之后,提出新的問(wèn)題:函數按奇偶性如何分類(lèi)?既奇又偶的函數是不是只有一個(gè)?試舉例說(shuō)明。

  4.布置作業(yè):

  六.目標檢測設計

  學(xué)案上的題型主要包括奇偶性函數的判斷及應用

  七.教學(xué)反思:(從兩方面)

  1.思成功

  一:是通過(guò)設計富有挑戰性的問(wèn)題來(lái)呈現背景,通過(guò)問(wèn)題的探究和自主學(xué)習來(lái)獲取相關(guān)概念,實(shí)現了 “教學(xué)邏輯”與“學(xué)習邏輯”的連通、“知識邏輯”與“認知邏輯”的連通;二:是在老師創(chuàng )設的情境中,每個(gè)學(xué)生都積極投入探究過(guò)程,學(xué)生在疑惑中探索,在探索中思考,在思考中發(fā)現,大部分學(xué)生積極性高漲,通過(guò)看別人怎樣觀(guān)察,

  聽(tīng)別人怎樣介紹,也學(xué)到了知識.

  2.思不足

  學(xué)生練習:在教學(xué)過(guò)程中應多注意學(xué)生的活動(dòng),由單一的問(wèn)答式轉化為多方位的考察,以采用

  學(xué)生板演或者把學(xué)生練習投影到屏幕上讓全班學(xué)生糾正等方式,更好的考察學(xué)生掌握情況。

  語(yǔ)言組織:

  在講授過(guò)程中還要注意到說(shuō)話(huà)語(yǔ)速,語(yǔ)言組織等講授技巧,應該用平緩的語(yǔ)氣講授,語(yǔ)言描述要簡(jiǎn)練易懂,不能拖泥帶水。

  教學(xué)環(huán)節(的完整):

  在授課過(guò)程中要注意到教學(xué)環(huán)節設計,我們的教學(xué)過(guò)程有復習引入、講授新課、例題講解、學(xué)生練習、課時(shí)小結、布置作業(yè)等幾個(gè)重要的環(huán)節,由于時(shí)間的關(guān)系沒(méi)有來(lái)得及小結造成教學(xué)設計不完善。在以后的教學(xué)過(guò)程中要注意這些環(huán)節。

  以上是我對這節課以后的教學(xué)反思,還有很多地方做的還不完善,我要在以后的教學(xué)中努力改進(jìn)這些錯誤,以便更好的適應教學(xué),努力使自己的教學(xué)更上一層樓。

高中數學(xué)說(shuō)課稿4

  一、說(shuō)教材

  1.內容分析:本節課是“反比例函數”的第一節課,是繼正比例函數、一次函數之后,二次函數之前的又一類(lèi)型函數,本節課主要通過(guò)豐富的生活事例,讓學(xué)生歸納出反比例函數的概念,并進(jìn)一步體會(huì )函數是刻畫(huà)變量之間關(guān)系的數學(xué)模型,從中體會(huì )函數的模型思想。因此本節課重點(diǎn)是理解和領(lǐng)悟反比例函數的概念,所滲透的數學(xué)思想方法有:類(lèi)比,轉化,建模。

  2.學(xué)情分析:對八年級學(xué)生來(lái)說(shuō),雖然他們已經(jīng)對函數,正比例函數,一次函數的概念、圖象、性質(zhì)以及應用有所掌握,但他們面對新的一次函數時(shí),還可能存在一些思維障礙,如學(xué)生不能準確地找出變量之間的自變量和因變量,以及如何從事例中領(lǐng)悟和總結出反比例函數的概念,因此,本節課的難點(diǎn)是理解和領(lǐng)悟反比例函數的概念。

  二、說(shuō)教學(xué)目標

  根據本人對《數學(xué)課程標準》的理解與分析,考慮學(xué)生已有的認知結構、心理特征,我把本課的目標定為:

  1.從現實(shí)的情境和已有的知識經(jīng)驗出發(fā),討論兩個(gè)變量之間的相依關(guān)系,加深對函數概念的理解。

  2.經(jīng)歷抽象反比例函數概念的過(guò)程,領(lǐng)會(huì )反比例函數的意義,理解反比例函數的概念。

  三、說(shuō)教法

  本節課從知識結構呈現的角度看,為了實(shí)現教學(xué)目標,我建立了“創(chuàng )設情境→建立模型→解釋知識→應用知識”的學(xué)習模式,這種模式清晰地再現了知識的生成與發(fā)展的過(guò)程,也符合學(xué)生的認知規律。于是,從教學(xué)內容的性質(zhì)出發(fā),我設計了如下的課堂結構:創(chuàng )設出電流、行程等情境問(wèn)題讓學(xué)生發(fā)現新知,把上述問(wèn)題進(jìn)行類(lèi)比,導出概念,獲得新知,最后總結評價(jià)、內化新知。

  四、說(shuō)學(xué)法

  我認為學(xué)生將實(shí)際問(wèn)題轉化成函數的能力是有限的,所以我借助多媒體輔助教學(xué),指導學(xué)生通過(guò)類(lèi)比、轉化、直觀(guān)形象的觀(guān)察與演示,親身經(jīng)歷函數模型的轉化過(guò)程,為學(xué)生攻克難點(diǎn)創(chuàng )造條件,同時(shí)考慮到本課的重點(diǎn)是反比例函數概念的教學(xué),也考慮到概念教學(xué)要從大量實(shí)際出發(fā),通過(guò)事例幫助完成定義。

  好學(xué)教育:

  因此,我采用了“問(wèn)題式探究法”的教法,利用多媒體設置豐富的問(wèn)題情境,讓學(xué)生的思維由問(wèn)題開(kāi)始,到問(wèn)題深化,讓學(xué)生的思維始終處于積極主動(dòng)的狀態(tài),并隨著(zhù)問(wèn)題的深入而跳躍。

高中數學(xué)說(shuō)課稿5

尊敬的各位專(zhuān)家、評委:

  上午好!

  今天我說(shuō)課的課題是人教A版必修1第二章第二節《對數函數》。

  我嘗試利用新課標的理念來(lái)指導教學(xué),對于本節課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學(xué)法分析、教學(xué)過(guò)程分析和評價(jià)分析五個(gè)方面來(lái)談?wù)勎覍滩牡睦斫夂徒虒W(xué)的設計,敬請各位專(zhuān)家、評委批評指正。

  一、教材分析

  地位和作用

  本章學(xué)習是在學(xué)生完成函數的第一階段學(xué)習(初中)的基礎上,進(jìn)行第二階段的函數學(xué)習。而對數函數作為這一階段的重要的基本初等函數之一,它是在學(xué)生已經(jīng)學(xué)習了指數函數及對數的內容,這為過(guò)渡到本節的學(xué)習起著(zhù)鋪墊作用!皩岛瘮怠边@節教材,是在沒(méi)有學(xué)習反函數的基礎上研究的指數函數和對數函數的自變量和因變量之間的關(guān)系。同時(shí)對數函數作為常用數學(xué)模型在解決社會(huì )生活中的實(shí)例有著(zhù)廣泛的應用,本節課的學(xué)習為學(xué)生進(jìn)一步學(xué)習,參加生產(chǎn)和實(shí)際生活提供必要的基礎知識。

  二、目標分析

 。ㄒ唬、教學(xué)目標

  根據《對數函數》在教材內容中的地位與作用,結合學(xué)情分析,本節課教學(xué)應實(shí)現如下的教學(xué)目標:

  1、知識與技能

 。1)、進(jìn)一步體會(huì )函數是描述變量之間的依賴(lài)關(guān)系的重要數學(xué)模型;

 。2)、理解對數函數的概念、掌握對數函數的圖像和性質(zhì);

 。3)、由實(shí)際問(wèn)題出發(fā),培養學(xué)生探索知識和抽象概括知識等方面的能力。

  2、過(guò)程與方法

  引導學(xué)生觀(guān)察,探尋變量和變量的對應關(guān)系,通過(guò)歸納、抽象、概括,自主建構對數函數的概念;體驗結合舊知識探索新知識,研究新問(wèn)題的快樂(lè )。

  3、情感態(tài)度與價(jià)值觀(guān)

  通過(guò)對對數函數函數圖像和性質(zhì)的探究過(guò)程,培養學(xué)生發(fā)現問(wèn)題,探索問(wèn)題,不斷超越的創(chuàng )新品質(zhì)。在民主、和諧的教學(xué)氣氛中,促進(jìn)師生的情感交流。

 。ǘ┙虒W(xué)重點(diǎn)、難點(diǎn)及關(guān)鍵

  1、重點(diǎn):對數函數的概念、圖像和性質(zhì);在教學(xué)中只有突出這個(gè)重點(diǎn),才能使教材脈絡(luò )分明,才能有利于學(xué)生聯(lián)系舊知識,學(xué)習新知識。

  2、 難點(diǎn):底數a對對數函數的圖像和性質(zhì)的影響。

  [關(guān)鍵]對數函數與指數函數的類(lèi)比教學(xué)。

  由指數函數的圖像過(guò)渡到對數函數的圖像,通過(guò)類(lèi)比分析達到深刻地了解對數函數的圖像及其性質(zhì)是掌握重點(diǎn)和突破難點(diǎn)的關(guān)鍵,在教學(xué)中一定要使學(xué)生的思考緊緊圍繞圖像,數形結合,加強直觀(guān)教學(xué),使學(xué)生能形成以圖像為根本,以性質(zhì)為主體的知識網(wǎng)絡(luò ),同時(shí)在立體的講解中,重視加強題組的設計和變形,使教學(xué)真正體現出由淺入深,由易到難,由具體到抽象的特點(diǎn),從而突破重點(diǎn)、突破難點(diǎn)。

  三、教法、學(xué)法分析

 。ㄒ唬、教法

  教學(xué)過(guò)程是教師和學(xué)生共同參與的過(guò)程,啟發(fā)學(xué)生自主性學(xué)習,充分調動(dòng)學(xué)生的積極性、主動(dòng)性;有效地滲透數學(xué)思想方法,提高學(xué)生素質(zhì)。根據這樣的原則和所要完成的教學(xué)目標,并為激發(fā)學(xué)生的學(xué)習興趣,我采用如下的教學(xué)方法:

  1、啟發(fā)引導學(xué)生思考、分析、實(shí)驗、探索、歸納;

  2、采用“從特殊到一般”、“從具體到抽象”的方法;

  3、體現“對比聯(lián)系”、“數形結合”及“分類(lèi)討論”的思想方法;

  4、投影儀演示法。

  在整個(gè)過(guò)程中,應以學(xué)生看,學(xué)生想,學(xué)生議,學(xué)生練為主體,教師在學(xué)生仔細觀(guān)察、類(lèi)比、想象的基礎上通過(guò)問(wèn)題串的形式加以引導點(diǎn)撥,與指數函數性質(zhì)對照,歸納,整理,只有這樣,才能喚起學(xué)生對原有知識的回憶,自覺(jué)地找到新舊知識的聯(lián)系,使新學(xué)知識更牢固,理解更深刻。

 。ǘ、學(xué)法

  教給學(xué)生方法比教給學(xué)生知識更重要,本節課注重調動(dòng)學(xué)生積極思考、主動(dòng)探索,盡可能地增加學(xué)生參與教學(xué)活動(dòng)的時(shí)間和空間,我進(jìn)行了以下學(xué)法指導:

  1、對照比較學(xué)習法:學(xué)習對數函數,處處與指數函數相對照;

  2、探究式學(xué)習法:學(xué)生通過(guò)分析、探索,得出對數函數的定義;

  3、自主性學(xué)習法:通過(guò)實(shí)驗畫(huà)出函數圖像、觀(guān)察圖像自得其性質(zhì);

  4、反饋練習法:檢驗知識的應用情況,找出未掌握的內容及其差距。

  四、教學(xué)過(guò)程分析

 。ㄒ唬、教學(xué)過(guò)程設計

  1、創(chuàng )設情境,提出問(wèn)題。

  在某細胞分裂過(guò)程中,細胞個(gè)數y是分裂次數x的函數y=2x,因此,知道x的值(輸入值是分裂次數)就能求出y的值(輸出值為細胞的個(gè)數),這樣就建立了一個(gè)細胞個(gè)數和分裂次數x之間的函數關(guān)系式。

  問(wèn)題一:這是一個(gè)怎樣的函數模型類(lèi)型呢?

  設計意圖

  復習指數函數

  問(wèn)題二:現在我們來(lái)研究相反的問(wèn)題,如果知道了細胞的個(gè)數y,如何求分裂的次數x呢?這將會(huì )是我們研究的哪類(lèi)問(wèn)題?

  設計意圖

  為了引出對數函數

  問(wèn)題三:在關(guān)系式x=log2y每輸入一個(gè)細胞的個(gè)數y的值,是否一定都能得到唯一一個(gè)分裂次數x的值呢?

  設計意圖

 。1)、為了讓學(xué)生更好地理解函數;

 。2)、為了讓學(xué)生更好地理解對數函數的概念。

  2、引導探究,建構概念。

 。1)、對數函數的概念:

  同樣,在前面提到的發(fā)射性物質(zhì),經(jīng)過(guò)的時(shí)間x年與物質(zhì)剩余量y的關(guān)系式為y=0.84x,我們也可以把它改成對數式x=log0.84y,其中x年夜可以看作物質(zhì)剩余量y的函數,可見(jiàn)這樣的問(wèn)題在現實(shí)生活中還是不少的。

  設計意圖

  前面的問(wèn)題情景的底數為2,而這個(gè)問(wèn)題情景的底數是0.84,我認為這個(gè)情景并不是多余的,其實(shí)它暗示了對數函數的底數與指數函數的底數一樣有兩類(lèi)。

  但是在習慣上,我們用x表示自變量,用y表示函數值。

  問(wèn)題一:你能把以上兩個(gè)函數表示出來(lái)嗎?

  問(wèn)題二:你能得到此類(lèi)函數的一般式嗎?

  設計意圖

  體現出了由特殊到一般的數學(xué)思想

  問(wèn)題三:在y=logax中,a有什么限制條件嗎?請結合指數式給以解釋。

  問(wèn)題四:你能根據指數函數的定義給出對數函數的定義嗎?

  問(wèn)題五:x=logay與y=ax中的x,y的相同之處是什么?不同之處是什么?

  設計意圖

  前四個(gè)問(wèn)題是為了引導出對數函數的概念,然而,光有前四個(gè)問(wèn)題還是不夠的,學(xué)生最容易忽略或最不容易理解的是函數的定義域,所以設計這個(gè)問(wèn)題是為了讓學(xué)生更好地理解對數函數的定義域。

 。2)、對數函數的圖像與性質(zhì)

  問(wèn)題:有了研究指數函數的經(jīng)歷,你覺(jué)得下面該學(xué)習什么內容了?

  設計意圖

  提示學(xué)生進(jìn)行類(lèi)比學(xué)習

  合作探究1:借助計算器在同一直角坐標系中畫(huà)出下列兩組函數的圖像,并觀(guān)察各族函數圖像,探求他們之間的關(guān)系。

  y=2x;y=log2x y=( )x,y=log x

  合作探究2:當a>0,a≠ 1,函數y=ax與y=logax圖像之間有什么關(guān)系?

  設計意圖

  在這兒體現“從特殊到一般”、“從具體到抽象”的方法。

  合作探究3:分析你所畫(huà)的兩組函數的圖像,對照指數函數的性質(zhì),總結歸納對數函數的性質(zhì)。

  設計意圖

  學(xué)生討論并交流各自的而發(fā)現成果,教師結合學(xué)生的交流,適時(shí)歸納總結,并板書(shū)對數函數的性質(zhì))。問(wèn)題1:對數函數y=logax( a>0,a≠1,)是否具有奇偶性,為什么?

  問(wèn)題2:對數函數y=logax( a>0,a≠1,),當a>1時(shí),x取何值,y>0,x取何值,y<0,當0

  問(wèn)題3:對數式logab的值的符號與a,b的取值之間有何關(guān)系?

  知識拓展:函數y=ax稱(chēng)為y=logax的'反函數,反之,也成立,一般地,如果函數y=f(x)存在反函數,那么它的反函數記作y=f-1(x)。

  3、自我嘗試,初步應用。

  例1:求下列函數的定義域

  y=log0.2(4-x)(該題主要考查對函數y=logax的定義域(0,+∞)這一限制條件,根據函數的解析式求得不等式,解對應的不等式。)

  例2:利用對數函數的性質(zhì),比較下列各組數中兩個(gè)數的大。

 。1)、㏒2 3.4,log2 3.8;

 。2)、log0.5 1.8,log0.5 2.1;

 。3)、log7 5,log6 7

 。ㄔ谶@兒要求學(xué)生通過(guò)回顧指數函數的有關(guān)性質(zhì)比較大小的步驟和方法,完成完成前兩題,最后一題可以通過(guò)教師的適當點(diǎn)撥完成解答,最后進(jìn)行歸納總結比較數的大小常用的方法)

  合作探究4:已知logm 4

  設計意圖

  該題不僅運用了對數函數的圖像和性質(zhì),還培養了學(xué)生數形結合、分類(lèi)討論等數學(xué)思想。

  4、當堂訓練,鞏固深化。

  通過(guò)學(xué)生的主體性參與,使學(xué)生深刻體會(huì )到本節課的主要內容和思想方法,從而實(shí)現對知識的再次深化。

  采用課后習題1,2,3.

  5、小結歸納,回顧反思。

  小結歸納不僅是對知識的簡(jiǎn)單回顧,還要發(fā)揮學(xué)生的主體地位,從知識、方法、經(jīng)驗等方面進(jìn)行總結。

 。1)、小結:

 、賹岛瘮档母拍

 、趯岛瘮档膱D像和性質(zhì)

 、劾脤岛瘮档男再|(zhì)比較大小的一般方法和步驟,

 。2)、反思

  我設計了三個(gè)問(wèn)題

 、、通過(guò)本節課的學(xué)習,你學(xué)到了哪些知識?

 、、通過(guò)本節課的學(xué)習,你最大的體驗是什么?

 、、通過(guò)本節課的學(xué)習,你掌握了哪些技能?

 。ǘ、作業(yè)設計

  作業(yè)分為必做題和選做題,必做題是對本節課學(xué)生知識水平的反饋,選做題是對本節課內容的延伸與連貫,強調學(xué)以致用。通過(guò)作業(yè)設置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿(mǎn)的學(xué)習興趣,促進(jìn)學(xué)生的自主發(fā)展、合作探究的學(xué)習氛圍的形成。

  我設計了以下作業(yè):

  必做題:課后習題A 1,2,3;

  選做題:課后習題B 1,2,3;

  (三)、板書(shū)設計

  板書(shū)要基本體現課堂的內容和方法,體現課堂進(jìn)程,能簡(jiǎn)明扼要反映知識結構及其相互關(guān)系:能指導教師的教學(xué)進(jìn)程、引導學(xué)生探索知識;通過(guò)使用幻燈片輔助板書(shū),節省課堂時(shí)間,使課堂進(jìn)程更加連貫。

  五、評價(jià)分析

  學(xué)生學(xué)習的結果評價(jià)固然重要,但是更重要的是學(xué)生學(xué)習的過(guò)程評價(jià)。我采用了及時(shí)點(diǎn)評、延時(shí)點(diǎn)評與學(xué)生互評相結合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過(guò)程中,評價(jià)學(xué)生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過(guò)程中評價(jià)學(xué)生的歸納猜想能力是否得到發(fā)展,通過(guò)鞏固練習考查學(xué)生對本節是否有一個(gè)完整的集訓,并進(jìn)行及時(shí)的調整和補充。

  以上就是我對本節課的理解和設計,敬請各位專(zhuān)家、評委批評指正。

  謝謝!

高中數學(xué)說(shuō)課稿6

  一、教材分析:

  1、教材的地位與作用。

  本節資料是在學(xué)生學(xué)習了"事件的可能性的基礎上來(lái)學(xué)習如何預測不確定事件(隨機事件)發(fā)生的可能性的大小。"用概率預測隨機發(fā)生的可能性大小,在日常生活、自然、科技領(lǐng)域有著(zhù)廣泛的應用,學(xué)習本單元知識,無(wú)論是今后繼續深造(高中學(xué)習概率的乘法定理)還是參加社會(huì )實(shí)踐活動(dòng)都是十分必要的。概率的概念比較抽象,概率的定義學(xué)生較難理解。

  在教材的處理上,采取小單元教學(xué),本節課安排讓學(xué)生了解求隨機事件概率的兩種方法,目的是讓學(xué)生能夠比較系統地理解概率的意義及求概率的方法,為下頭學(xué)習求比較復雜的情景的概率打下基礎。

  2、重點(diǎn)與難點(diǎn)。

  重點(diǎn):對概率意義的理解,經(jīng)過(guò)多次重復實(shí)驗,用頻率預測概率的方法,以及用列舉法求概率的方法。

  難點(diǎn):對概率意義的理解和用列舉法求概率過(guò)程中在各種可能性相同條件下某一事件可能發(fā)生的總數及總的結果數的分析。

  二、目的分析:

  知識與技能:掌握用頻率預測概率和用列舉法求概率方法。

  過(guò)程與方法:組織學(xué)生自主探究,合作交流,引導學(xué)生觀(guān)察試驗和統計的結果,進(jìn)而進(jìn)行分析、歸納、總結,了解并感受概率的定義的過(guò)程,引導學(xué)生從數學(xué)的視角觀(guān)察客觀(guān)世界,用數學(xué)的思維思考客觀(guān)世界,以數學(xué)的語(yǔ)言描述客觀(guān)世界。

  情感態(tài)度價(jià)值觀(guān):學(xué)生經(jīng)歷觀(guān)察、分析、歸納、確認等數學(xué)活動(dòng),感受數學(xué)活動(dòng)充滿(mǎn)了探索性與創(chuàng )造性,感受量變與質(zhì)變的對立統一規律,同時(shí)為概率的精準、新穎、獨特的思維方法所震撼,激發(fā)學(xué)生學(xué)習數學(xué)的熱情,增強對數學(xué)價(jià)值觀(guān)的認識。

  三、教法、學(xué)法分析:

  引導學(xué)生自主探究、合作交流、觀(guān)察分析、歸納總結,讓學(xué)生經(jīng)歷知識(概率定義計算公式)的產(chǎn)生和發(fā)展過(guò)程,讓學(xué)生在數學(xué)活動(dòng)中學(xué)習數學(xué)、掌握數學(xué),并能應用數學(xué)解決現實(shí)生活中的實(shí)際問(wèn)題,教師是學(xué)生學(xué)習的組織者、合作者和指導者,精心設計教學(xué)情境,有序組織學(xué)生活動(dòng),讓課堂充滿(mǎn)生機活力,體現"教"為"學(xué)"服務(wù)這一宗旨。

  四、教學(xué)過(guò)程分析:

  1、引導學(xué)生探究

  精心設計問(wèn)題一,學(xué)生經(jīng)過(guò)對問(wèn)題一的探究,一方面復習前面學(xué)過(guò)的"確定事件和不確定事件"的知識,為學(xué)好本節資料理清知識障礙,二是讓學(xué)生明確為什么要學(xué)習概率(如何預測隨機事件可能性發(fā)生大。。引導學(xué)生對問(wèn)題二的探究與觀(guān)察實(shí)驗數據,使學(xué)生了解概率這一重要概念的實(shí)際背景,感受并相信隨機事件的發(fā)生中存在著(zhù)統計規律性,感受數學(xué)規律的真實(shí)的發(fā)現過(guò)程。

  2、歸納概括

  學(xué)生從試驗中得到的統計數字及概率呈現穩定在某一數值附近這一規律,讓學(xué)生明確概率定義的由來(lái)。

  引導學(xué)生重新對問(wèn)題一和問(wèn)題二的探究,分析某事件發(fā)生的各種可能性在全部可能發(fā)生結果中所占比例,得到用列舉法求概率的公式,引導學(xué)生進(jìn)行理性思維,邏輯分析,既培養學(xué)生的分析問(wèn)題本事,又讓學(xué)生明確用列舉法求概率這一簡(jiǎn)便快捷方法的合理性。

  3、舉例應用

 、乓龑W(xué)生對教材書(shū)例題、問(wèn)題一、問(wèn)題二中問(wèn)題的進(jìn)一步分析與探究,讓學(xué)生掌握用列舉法求概率的方法。

 、埔龑W(xué)生對練習中的問(wèn)題思考與探究,鞏固對概率公式的應用及加深對概率意義的理解。

  4、深化發(fā)展

 、旁O置3個(gè)小題目,引導學(xué)生歸納、分析、總結,加深對知識與方法的理解,并學(xué)會(huì )靈活運用。

 、谱寣W(xué)生設計活動(dòng)資料,對知識進(jìn)行升華和拓展,引導學(xué)生創(chuàng )造性地運用知識思考問(wèn)題和解決問(wèn)題,從而培養學(xué)生的創(chuàng )新意識和創(chuàng )新本事。

高中數學(xué)說(shuō)課稿7

  一、本節內容的地位與重要性

  "分類(lèi)計數原理與分步計數原理"是《高中數學(xué)》一節獨特內容。這一節課與排列、組合的基本概念有著(zhù)緊密的聯(lián)系,通過(guò)對這一節課的學(xué)習,既可以讓學(xué)生接受、理解分類(lèi)計數原理與分步計數原理,還為日后排列、組合和二項式定理的教學(xué)做好準備,起到奠基的重要作用。

  二、關(guān)于教學(xué)目標的確定

  根據兩個(gè)基本原理的地位和作用,我認為本節課的教學(xué)目標是:

 。1)使學(xué)生正確理解兩個(gè)基本原理的概念;

 。2)使學(xué)生能夠正確運用兩個(gè)基本原理分析、解決一些簡(jiǎn)單問(wèn)題;

 。3)提高分析、解決問(wèn)題的能力

 。4)使學(xué)生樹(shù)立"由個(gè)別到一般,由一般到個(gè)別"的認識事物的辯證唯物主義哲學(xué)思想觀(guān)點(diǎn)。

  三、關(guān)于教學(xué)重點(diǎn)、難點(diǎn)的選擇和處理

  中學(xué)數學(xué)課程中引進(jìn)的關(guān)于排列、組合的計算公式都是以?xún)蓚(gè)計數原理為基礎的,而一些較復雜的排列、組合應用題的求解,更是離不開(kāi)兩個(gè)基本原理,所以正確理解兩個(gè)基本原理并能解決實(shí)際問(wèn)題是學(xué)習本章的重點(diǎn)內容。

  正確使用兩個(gè)基本原理的前提是要學(xué)生清楚兩個(gè)基本原理使用的條件。而原理中提到的分步和分類(lèi),學(xué)生不是一下子就能理解深刻的,面對復雜的事物和現象學(xué)生對分類(lèi)和分步的選擇容易產(chǎn)生錯誤的認識,所以分類(lèi)計數原理和分步計數原理的準確應用是本節課的教學(xué)難點(diǎn)。必需使學(xué)生認清兩個(gè)基本原理的實(shí)質(zhì)就是完成一件事需要分類(lèi)還是分步,才能使學(xué)生接受概念并對如何運用這兩個(gè)基本原理有正確清楚的認識。教學(xué)中兩個(gè)基本問(wèn)題的引用及引伸,就是為突破難點(diǎn)做準備。

  四、關(guān)于教學(xué)方法和教學(xué)手段的選用

  根據本節課的內容及學(xué)生的實(shí)際水平,我采取啟發(fā)引導式教學(xué)方法并充分發(fā)揮電腦多媒體的輔助教學(xué)作用。

  啟發(fā)引導式作為一種啟發(fā)式教學(xué)方法,體現了認知心理學(xué)的基本理論。符合教學(xué)論中的自覺(jué)性和積極性、鞏固性、可接受性、教學(xué)與發(fā)展相結合、教師的主導作用與學(xué)生的主體地位相統一等原則,教學(xué)過(guò)程中,教師采用點(diǎn)撥的方法,啟發(fā)學(xué)生通過(guò)主動(dòng)思考、動(dòng)手操作來(lái)達到對知識的"發(fā)現"和接受,進(jìn)而完成知識的內化,使書(shū)本的知識成為自己的知識。

  電腦多媒體以聲音、動(dòng)畫(huà)、影像等多種形式強化對學(xué)生感觀(guān)的刺激,這一點(diǎn)是粉筆和黑板所不能比擬的,采取這種形式,可以極大提高學(xué)生的學(xué)習興趣,加大一堂課的信息容量,使教學(xué)目標更完美地體現。另外,電腦軟件具有良好的交互性,可以將教師的思路和策略以軟件的形式來(lái)體現,更好地為教學(xué)服務(wù)。

  五、關(guān)于學(xué)法的指導

  "授人以魚(yú),不如授人以漁",在教學(xué)過(guò)程中,不但要傳授學(xué)生課本知識,還要培養學(xué)生主動(dòng)觀(guān)察、主動(dòng)思考、自我發(fā)現的學(xué)習能力,增強學(xué)生的綜合素質(zhì),從而達到教學(xué)的目標。教學(xué)中,教師創(chuàng )設疑問(wèn),學(xué)生想辦法解決疑問(wèn),通過(guò)教師的啟發(fā)點(diǎn)撥,類(lèi)比推理,在積極的雙邊活動(dòng)中,學(xué)生找到了解決疑難的方法。整個(gè)過(guò)程貫穿"設疑"——"思索"——"發(fā)現"——"解惑"四個(gè)環(huán)節,學(xué)生隨時(shí)對所學(xué)知識產(chǎn)生有意注意,思想上經(jīng)歷了從肯定到否定、又從否定到肯定的辨證思維過(guò)程,符合學(xué)生認知水平,培養了學(xué)習能力。

  六、關(guān)于教學(xué)程序的設計

 。ㄒ唬┱n題導入

  這是本章的第一節課,是起始課,講起始課時(shí),把這一學(xué)科的內容作一個(gè)大概的介紹,能使學(xué)生從一開(kāi)始就對將要學(xué)習的知識有一個(gè)初步的了解,并為下面的學(xué)習打下思想基礎。所以,首先閱讀引言,明確任務(wù),激發(fā)興趣。由學(xué)生感興趣的乒乓球比賽提出問(wèn)題,引出學(xué)習本節的必要性,明確研究計數方法是本章內容的獨特性,從應用的廣泛看學(xué)習本章內容的重要性。同時(shí)板書(shū)課題(分類(lèi)計數原理與分步計數原理)

  這樣做,能使學(xué)生明白本節內容的地位和作用,激發(fā)其學(xué)習新知識的欲望,為順利完成教學(xué)任務(wù)做好思維上的準備。

 。ǘ┬抡n講授

  通過(guò)幻燈片給出問(wèn)題,配圖分析,講清坐火車(chē)與坐汽車(chē)兩類(lèi)方法均可,每類(lèi)中任一種辦法都可以獨立地把從甲地到乙地這件事辦好。

  緊跟著(zhù)給出:

  引申1:若甲地到乙地一天中還有4班輪船可乘,那么一天中,坐這些交通工具從甲地到一點(diǎn)共有多少種不同的走法?

  引伸2:若完成一件事,有 類(lèi)辦法。在第1類(lèi)辦法中有 種不同方法,在第2類(lèi)辦法中有 種不同的方法,……,在第 類(lèi)辦法中有 種不同方法,每一類(lèi)中的每一種方法均可完成這件事,那么完成這件事共有多少種不同方法?

  這個(gè)問(wèn)題的兩個(gè)引申由漸入深、循序漸進(jìn)為學(xué)生接受分類(lèi)計數原理做好了準備。

  板書(shū)分類(lèi)計數原理內容:

  完成一件事,有 類(lèi)辦法。在第1類(lèi)辦法中有 種不同方法,在第2類(lèi)辦法中有 種不同的方法,……,在第 類(lèi)辦法中有 種不同方法,那么完成這件事共有 種不同的方法。(也稱(chēng)加法原理)

  此時(shí),趁學(xué)生對于原理有了一個(gè)較清晰的認識,引導學(xué)生分析分類(lèi)計數原理內容,啟發(fā)總結得下面三點(diǎn)注意:(出示幻燈片)

 。1)各分類(lèi)之間相互獨立,都能完成這件事;

 。2)根據問(wèn)題的特點(diǎn)在確定的分類(lèi)標準下進(jìn)行分類(lèi);

 。3)完成這件事的任何一種方法必屬于某一類(lèi),并且分別屬于不同兩類(lèi)的兩種方法都是不同的方法。

  這樣做加深學(xué)生對分類(lèi)計數原理的正確理解,突出了重點(diǎn),突破了難點(diǎn)。

  接下來(lái)給出問(wèn)題2:(出示幻燈片)

  由A村去B村的道路有3條,由B村去C村的道路有2條(見(jiàn)圖9-1),從A村經(jīng)B村去C村,共有多少種不同的走法?

  提出問(wèn)題:?jiǎn)?wèn)題1與問(wèn)題2同是研究從甲地到乙地的不同走法,請找出這兩個(gè)問(wèn)題的不之處?學(xué)生會(huì )發(fā)現問(wèn)題1中采用乘火車(chē)或乘汽車(chē)都可以從甲地到乙地,而問(wèn)題2中必須經(jīng)過(guò)先乘火車(chē)后乘汽車(chē)兩個(gè)步驟才能完成從甲地到乙地這件事。

  問(wèn)題2的講授采用給出問(wèn)題,配圖分析,組織討論,強調分步。用多媒體配不同的顏色閃現出六種不同的走法,讓學(xué)生列式求出不同走法數,并列舉所有走法。

  歸納得出:分步計數原理(板書(shū)原理內容)

  分步計數原理:做一件事,完成它需要分成n個(gè)步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法。那么,完成這件事共有

  N=m1×m2×…×mn

  種不同的方法。

  同樣趁學(xué)生對定理有一定的認識,引導學(xué)生分析分步計數原理內容,啟發(fā)總結得下面三點(diǎn)注意:(出示幻燈片)

 。1) 各步驟相互依存,只有各個(gè)步驟完成了,這件事才算完成;

 。2) 根據問(wèn)題的特點(diǎn)在確定的分步標準下分步;

 。3) 分步時(shí)要注意滿(mǎn)足完成一件事必須并且只需連續完成這N個(gè)步驟這件事才算完成。

 。ㄈ⿷门e例

  教材例1:(書(shū)架取書(shū)問(wèn)題)引導學(xué)生分析解答,注意區分是分類(lèi)還是分步。

  例2:由數字0,1,2,3,4可以組成多少個(gè)三位整數(各位上的數字允許重復)?本題設置了4個(gè)問(wèn)題:

 。1) 每一個(gè)三位數是由什么構成的?(三個(gè)整數字)

 。2) 023是一個(gè)三位數嗎?(百位上不能是0)

 。3) 組成一個(gè)三位數需要怎么做?(分成三個(gè)步驟來(lái)完成:第一步確定百位上的數字;第二步確定十位上的數字;第三步確定個(gè)位上的數字)

 。4) 怎樣表述?

  教師巡視指導、并歸納

  解:要組成一個(gè)三位數,需要分成三個(gè)步驟:第一步確定百位上的數字,從1~4這4個(gè)數字中任選一個(gè)數字,有4種選法;第二步確定十位上的數字,由于數字允許重復,共有5種選法;第三步確定個(gè)位上的數字,仍有5種選法。根據分步計數原理,得到可以組成的三位整數的個(gè)數是N=4×5×5=100.

  答:可以組成100個(gè)三位整數。

 。ń處煹倪B續發(fā)問(wèn)、啟發(fā)、引導,幫助學(xué)生找到正確的解題思路和計算方法,使學(xué)生的分析問(wèn)題能力有所提高。

  教師在第二個(gè)例題中給出板書(shū)示范,能幫助學(xué)生進(jìn)一步加深對兩個(gè)基本原理實(shí)質(zhì)的理解,周密的考慮,準確的表達、規范的書(shū)寫(xiě),對于學(xué)生周密思考、準確表達、規范書(shū)寫(xiě)良好習慣的形成有著(zhù)積極的促進(jìn)作用,也可以為學(xué)生后面應用兩個(gè)基本原理解排列、組合綜合題打下基礎)

 。ㄋ模w納小結

  師:什么時(shí)候用分類(lèi)計數原理、什么時(shí)候用分步計數原理呢?

  生:分類(lèi)時(shí)用分類(lèi)計數原理,分步時(shí)用分步計數原理。

  師:應用兩個(gè)基本原理時(shí)需要注意什么呢?

  生:分類(lèi)時(shí)要求各類(lèi)辦法彼此之間相互排斥;分步時(shí)要求各步是相互獨立的。

 。ㄎ澹┱n堂練習

  P222:練習1~4.學(xué)生板演第4題

 。▽τ陬}4,教師有必要對三個(gè)多項式乘積展開(kāi)后各項的構成給以提示)

 。┎贾米鳂I(yè)

  P222:練習5,6,7.

  補充題:

  1.在所有的兩位數中,個(gè)位數字小于十位數字的共有多少個(gè)?

 。ㄌ崾荆喊词簧蠑底值拇笮】梢苑譃9類(lèi),共有9+8+7+…+2+1=45個(gè)個(gè)位數字小于十位數字的兩位數)

  2.某學(xué)生填報高考志愿,有m個(gè)不同的志愿可供選擇,若只能按第一、二、三志愿依次填寫(xiě)3個(gè)不同的志愿,求該生填寫(xiě)志愿的方式的種數。

 。ㄌ崾荆盒枰慈齻(gè)志愿分成三步。共有m(m-1)(m-2)種填寫(xiě)方式)

  3.在所有的三位數中,有且只有兩個(gè)數字相同的三位數共有多少個(gè)?

 。ㄌ崾荆嚎梢杂孟旅娣椒▉(lái)求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類(lèi)中每類(lèi)都是9×9種,共有9×9+9×9+9×9=3×9×9=243個(gè)只有兩個(gè)數字相同的三位數)

  4.某小組有10人,每人至少會(huì )英語(yǔ)和日語(yǔ)中的一門(mén),其中8人會(huì )英語(yǔ),5人會(huì )日語(yǔ),(1)從中任選一個(gè)會(huì )外語(yǔ)的人,有多少種選法?(2)從中選出會(huì )英語(yǔ)與會(huì )日語(yǔ)的各1人,有多少種不同的選法?

 。ㄌ崾荆河捎8+5=13>10,所以10人中必有3人既會(huì )英語(yǔ)又會(huì )日語(yǔ)。(1)N=5+2+3;(2)N=5×2+5×3+2×3)

  只要大家用心學(xué)習,認真復習,就有可能在高中的戰場(chǎng)上考取自己理想的成績(jì)。

高中數學(xué)說(shuō)課稿8

  一.說(shuō)教材

  1.本節課主要內容是線(xiàn)性規劃的意義以及線(xiàn)性約束條件、線(xiàn)性目標函數、可行域、可行解、最優(yōu)解等概念,根據約束條件建立線(xiàn)性目標函數。應用線(xiàn)性規劃的圖解法解決一些實(shí)際問(wèn)題。

  2.地位作用:線(xiàn)性規劃是數學(xué)規劃中理論較完整、方法較成熟、應用較廣泛的一個(gè)分支,它可以解決科學(xué)研究、工程設計、經(jīng)濟管理等許多方面的實(shí)際問(wèn)題。簡(jiǎn)單的線(xiàn)性規劃是在學(xué)習了直線(xiàn)方程的基礎上,介紹直線(xiàn)方程的一個(gè)簡(jiǎn)單應用。通過(guò)這部分內容的學(xué)習,使學(xué)生進(jìn)一步了解數學(xué)在解決實(shí)際問(wèn)題中的應用,以培養學(xué)生學(xué)習數學(xué)的興趣、應用數學(xué)的意識和解決實(shí)際問(wèn)題的能力。

  3.教學(xué)目標

  (1)知識與技能:了解線(xiàn)性規劃的意義以及線(xiàn)性約束條件、線(xiàn)性目標函數、可行域、可行解、最優(yōu)解等概念,能根據約束條件建立線(xiàn)性目標函數。

  了解并初步應用線(xiàn)性規劃的圖解法解決一些實(shí)際問(wèn)題。

  (2)過(guò)程與方法:提高學(xué)生數學(xué)地提出、分析和解決問(wèn)題的能力,發(fā)展學(xué)生數學(xué)應用意識,力求對現實(shí)世界中蘊含的一些數學(xué)模式進(jìn)行思考和作出判斷。

  (3)情感、態(tài)度與價(jià)值觀(guān):體會(huì )數形結合、等價(jià)轉化等數學(xué)思想,逐步認識數學(xué)的應用價(jià)值,提高學(xué)習數學(xué)的興趣,樹(shù)立學(xué)好數學(xué)的自信心。

  4.重點(diǎn)與難點(diǎn)

  重點(diǎn):理解和用好圖解法

  難點(diǎn):如何用圖解法尋找線(xiàn)性規劃的最優(yōu)解。

  二.說(shuō)教學(xué)方法

  教學(xué)過(guò)程是教師和學(xué)生共同參與的過(guò)程,啟發(fā)學(xué)生自主性學(xué)習,充分調動(dòng)學(xué)生的積極性、主動(dòng)性;有效地滲透數學(xué)思想方法,提高學(xué)生素質(zhì)。根據這樣的原則和所要完成的教學(xué)目標,并為激發(fā)學(xué)生的學(xué)習興趣,我采用如下的教學(xué)方法:

  (1)啟發(fā)引導學(xué)生思考、分析、實(shí)驗、探索、歸納。這能充分調動(dòng)學(xué)生的主動(dòng)性和積極性。

  (2)采用“從特殊到一般”、“化抽象為具體”、“化靜為動(dòng)”的方法。這有利于學(xué)生對知識進(jìn)行主動(dòng)建構;有利于突出重點(diǎn)、解決難點(diǎn);也有利于發(fā)揮學(xué)生的創(chuàng )造性。

  (3)體現“等價(jià)轉化”、“數形結合”的思想方法。這樣可發(fā)揮學(xué)生的主觀(guān)能動(dòng)性,有利于提高學(xué)生的各種能力。

  三.說(shuō)學(xué)法指導

  教給學(xué)生方法比教給學(xué)生知識更重要,本節課注重調動(dòng)學(xué)生積極思考、主動(dòng)探索,盡可能地增加學(xué)生參與教學(xué)活動(dòng)的時(shí)間和空間,我進(jìn)行了以下學(xué)法指導:觀(guān)察分析、聯(lián)想轉化、動(dòng)手實(shí)驗、練習鞏固。

  (1)觀(guān)察分析:通過(guò)引例讓學(xué)生觀(guān)察化舊知為新知,造成學(xué)生認知沖突。

  (2)聯(lián)想轉化:學(xué)生通過(guò)分析、探索、得出解決問(wèn)題的方法。

  (3)動(dòng)手實(shí)驗:通過(guò)作圖、實(shí)驗、從而得出一般解題步驟。

  (4)練習鞏固:讓學(xué)生知道數學(xué)重在運用,從而檢驗知識的應用情況,找出未掌握的內容及其差距。

  四.說(shuō)教學(xué)程序

  1、導入課題: 由一個(gè)不等式組表示平面區域轉化為在此平面區域內一二元一次數的最值問(wèn)題,造成學(xué)生認知沖突。

  3、導學(xué)達標之一:創(chuàng )設情境、形成概念

  通過(guò)引例的問(wèn)題讓學(xué)生探索解決新問(wèn)題的方法。

  (設計意圖:利用已經(jīng)學(xué)過(guò)的知識逐步分析,學(xué)以致用,使學(xué)生經(jīng)歷數學(xué)知識的形成過(guò)程,從而提高學(xué)生數學(xué)的地提出、分析和解決問(wèn)題的能力。)

  然后老師逐步引導,動(dòng)手實(shí)驗,化抽象為直觀(guān)。從而得到解決此類(lèi)問(wèn)題的方法,并對比引例給出相關(guān)概念:線(xiàn)性約束條件、目標函數、線(xiàn)性目標函數、線(xiàn)性規劃、可行解、可行域、最優(yōu)解。并能根據引例提煉線(xiàn)性規劃問(wèn)題的解法——圖解法。

  (設計意圖:引導學(xué)生觀(guān)察和分析問(wèn)題,激發(fā)學(xué)生的探索欲望,從而培養學(xué)生的解決問(wèn)題和總結歸納的能力。)

  4.導學(xué)達標之二:針對問(wèn)題、舉例講解、形成技能

  例一:課本61頁(yè)例3

  (創(chuàng )設意境:,練習是使學(xué)生明白數學(xué)來(lái)源于實(shí)際又運用于實(shí)際,同時(shí)使學(xué)生進(jìn)初步應用線(xiàn)性規劃的圖解法解決一些實(shí)際問(wèn)題。)

  6.鞏固目標:

  練習一:學(xué)生做課堂練習P64例4

  (叫學(xué)生提出解決問(wèn)題的方法,并用多媒體展示,并根據問(wèn)題的實(shí)際意義,考慮取值范圍。造成新的認知沖突,從而研究探索,得到整點(diǎn)最優(yōu)解的一種求法。)

  練習二:為了賺大錢(qián),老張最近承包了一家具廠(chǎng),可老張卻悶悶不樂(lè ),原來(lái)家具廠(chǎng)有方木料90m3,五合板600m2,老張準備加工成書(shū)桌和書(shū)廚出售,他通過(guò)調查了解到:生產(chǎn)每張書(shū)桌需要方木料0.1m3、五合板2m2,生產(chǎn)每個(gè)書(shū)櫥需要方木料0.2m3、五合板1m2,出售一張書(shū)桌可獲利潤80元,出售一個(gè)書(shū)櫥可獲利潤120元。老張卻不知如何安排?(電腦顯示問(wèn)題)

  (設計意圖:通過(guò)實(shí)際問(wèn)題,激發(fā)學(xué)生興趣,培養學(xué)生的數學(xué)應用意識,力求學(xué)生能夠對現實(shí)生活中蘊含的一些數學(xué)模式進(jìn)行思考和作出判斷。)

  7.歸納與小結:

  小結本課的主要學(xué)習內容是什么?(由師生共同來(lái)完成本課小結)

  (創(chuàng )設意境:讓學(xué)生參與小結,引導學(xué)生對所學(xué)知識進(jìn)行反思,有利于加強學(xué)生記憶和形成良好的數學(xué)思維習慣)

  8.布置作業(yè):

  P64. 2

  五.說(shuō)板書(shū)設計

  板書(shū)設計為表格式,這樣的板書(shū)簡(jiǎn)明清楚,重點(diǎn)突出,加深學(xué)生對重點(diǎn)知識的理解和掌握,同時(shí)便于記憶,有利于提高教學(xué)效果。

高中數學(xué)說(shuō)課稿9

各位教師:

  今天我說(shuō)課的題目是《必修》4第二章第二單元中“平面向量的線(xiàn)性運算”的第一節課《向量的加法》,我從以下幾個(gè)方面闡述本課的教學(xué)設計。

  一、教材分析:

  《向量的加法》是《必修》4第二章第二單元中“平面向量的線(xiàn)性運算”的第一節課。本節內容有向量加法的平行四邊形法則、三角形法則及應用,向量加法的運算律及應用,大約需要1課時(shí)。向量的加法是向量的線(xiàn)性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學(xué)習向量的減法運算及其幾何意義、向量的數乘運算及其幾何意義奠定了基礎;其中三角形法則適用于求任意多個(gè)向量的和,在空間向量與立體幾何中有很普遍的應用。所以本課在“平面向量”及“空間向量”中有很重要的地位。

  二、學(xué)情分析:

  學(xué)生在上節課中學(xué)習了向量的定義及表示,相等向量,平行向量等概念,知道向量可以自由移動(dòng),這是學(xué)習本節內容的基礎。學(xué)生對數的運算了如指掌,并且在物理中學(xué)過(guò)力的合成、位移的合成等矢量的加法,所以向量的加法可通過(guò)類(lèi)比數的加法、以所學(xué)的物理模型為背景引入,這樣做有利于學(xué)生更好地理解向量加法的意義,準確把握兩個(gè)加法法則的特點(diǎn)。

  三、教學(xué)目的:

  1、通過(guò)對向量加法的探究,使學(xué)生掌握向量加法的概念,結合物理學(xué)實(shí)際理解向量加法的意義。能正確領(lǐng)會(huì )向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個(gè)已知向量的和向量。

  2、在應用活動(dòng)中,理解向量加法滿(mǎn)足交換律和結合律以及表述兩個(gè)運算律的幾何意義。掌握有特殊位置關(guān)系的兩個(gè)向量之和,比如共線(xiàn)向量,共起點(diǎn)向量、共終點(diǎn)向量等。

  3、通過(guò)本節的學(xué)習,培養學(xué)生類(lèi)比、遷移、分類(lèi)、歸納等數學(xué)方面的能力。

  四、教學(xué)重、難點(diǎn)

  重點(diǎn):向量的加法法則。探究向量的加法法則并正確應用是本課的重點(diǎn)。兩個(gè)加法法則各有特點(diǎn),聯(lián)系緊密,你中有我,我中有你,實(shí)質(zhì)相同,但是三角形法則適用范圍更加廣泛,且簡(jiǎn)便易行,所以是詳講內容,平行四邊形法則在本課中所占份量略少于三角形法則。

  難點(diǎn):對三角形法則的理解;方向相反的兩個(gè)向量的加法。主要是讓學(xué)生認識到三角形法則的實(shí)質(zhì)是:將已知向量首尾相接,而不是表示向量的有向線(xiàn)段之間必須構成三角形。

  五、教學(xué)方法

  本節采用以下教學(xué)方法:1、類(lèi)比:由數的加法運算類(lèi)比向量的加法運算。2、探究:由力的合成引入平行四邊形法則,在法則的運用中觀(guān)察圖形得出三角形法則,探求共線(xiàn)向量的加法,發(fā)現三角形法則適用于任意向量相加;通過(guò)圖形,觀(guān)察得出向量加法滿(mǎn)足交換律、結合律等,這些都體現探究式教學(xué)法的運用。3、講解與練習:對兩個(gè)法則特點(diǎn)的分析,例題都采取了引導與講解的方法,學(xué)生課堂完成教材中的練習。4、多媒體技術(shù)的運用,能直觀(guān)地表現向量的平移,相等向量的意義,更能說(shuō)清兩個(gè)法則的幾何意義及運算律。

  六、數學(xué)思想的體現:

  1、分類(lèi)的思想:總的來(lái)說(shuō)本課中向量的加法分為不共線(xiàn)向量及共線(xiàn)向量?jì)煞N形式,共線(xiàn)向量又分為方向相同與方向相反兩種情形,然后專(zhuān)門(mén)對零向量與任意向量相加作了規定,這樣對任意向量的加法都做了討論,線(xiàn)索清楚。

  2、類(lèi)比思想:使之與數的加法進(jìn)行類(lèi)比,使學(xué)生對向量的加法不致于太陌生,既有似曾相識的感覺(jué),又能從對比中看出兩者的不同,效果較好。

  3、歸納思想:主要體現在以下三個(gè)環(huán)節①學(xué)完平行四邊形法則和三角形法則后,歸納總結,對不共線(xiàn)向量相加,兩個(gè)法則都可以選用。②由共線(xiàn)向量的加法總結出三角形法則適用于任意兩個(gè)向量的相加,而三角形法則僅適用于不共線(xiàn)向量相加。③對向量加法的結合律和探討中,又使學(xué)生發(fā)現了三角形法則還適用于任意多個(gè)向量的加法。歸納思想在這三個(gè)環(huán)節中的運用,使得學(xué)生對兩個(gè)加法法則,尤其是三角形法則的理解,步步深入。

  七、教學(xué)過(guò)程:

  1、回顧舊知:本節要進(jìn)行向量的平移,且對向量加法分共線(xiàn)與不共線(xiàn)兩種情況,所以要復習向量、相等向量、共線(xiàn)向量等概念,這些都是新課學(xué)習中必要的知識鋪墊。

  2、引入新課:

 。1)平行四邊形法則的引入。

  學(xué)生在物理學(xué)中雖然接觸過(guò)位移的合成,但是并沒(méi)有形成三角形法則的概念;而對平行四邊形法則學(xué)生已學(xué)過(guò),很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點(diǎn)是起點(diǎn)相同,但是物理中力的合成是在有相同的作用點(diǎn)的條件下合成的,引入到數學(xué)中向量加法的平行四邊形法則,所給出的圖形也是現成的平行四邊形,而學(xué)生剛學(xué)完相等向量,對相等向量的概念還沒(méi)有深刻的認識,易產(chǎn)生誤解:表示兩個(gè)已知向量的有向線(xiàn)段的起點(diǎn)必須在一起才能用平行四邊形法則,不在一起不能用。這時(shí)要通過(guò)講解例1,使學(xué)生認識到可以通過(guò)平移向量,使表示兩個(gè)向量的有向線(xiàn)段有共同的起點(diǎn)。這一點(diǎn)對理解及運用法則求兩向量的和很重要。

  設計意圖:本著(zhù)從學(xué)生最熟悉、離學(xué)生最近的知識經(jīng)驗為接入點(diǎn),用學(xué)生熟知的方法來(lái)解決新的問(wèn)題——向量的加法,這樣新中有舊,學(xué)生容易接受,也使學(xué)科間的滲透發(fā)揮了作用,加深了學(xué)生對向量加法的平行四邊形法則的“起點(diǎn)相同”這一特點(diǎn)的認識,例1的講解使學(xué)生認識到當表示向量的有向線(xiàn)段的起點(diǎn)不在一起時(shí),須把起點(diǎn)移到一起,至此才能使學(xué)生完成對平行四邊形法則理解真正到位。

 。2)三角形法則的引入。三角形法則沒(méi)有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入(如圖)。

  所以這種把兩個(gè)向量相加的方法稱(chēng)為三角形法則。接下來(lái)用幻燈片完整展示三角形法則,同時(shí)法則的作法敘述、作圖過(guò)程對學(xué)生也起到了示例的作用。于是前面的例1還可以利用三角形法則來(lái)做。

  這時(shí),總結出兩個(gè)不共線(xiàn)向量求和時(shí),平行四邊形法則與三角形法則都可以用。

  設計意圖:由平行四邊形法則的圖形引入三角形法則,可以很清楚地使學(xué)生從向何意義上認識到兩個(gè)法則之間的密切聯(lián)系,理解它們的實(shí)質(zhì),而且銜接自然,能夠使學(xué)生對比地得出兩個(gè)法則的特點(diǎn)與實(shí)質(zhì),并對兩個(gè)法則的特點(diǎn)有較深刻的印象。

 。3)共線(xiàn)向量的加法

  方向相同的兩個(gè)向量相加,對學(xué)生來(lái)說(shuō)較易完成,“將它們接在一起,取它們的方向及長(cháng)度之和,作為和向量的方向與長(cháng)度!币龑W(xué)生分析作法,結果發(fā)現還是運用了三角形法則:首尾相接,方向由第一個(gè)向量的起點(diǎn)指向第二個(gè)向量的終點(diǎn)。

  方向相反的兩個(gè)向量相加,對學(xué)生來(lái)說(shuō)是個(gè)難點(diǎn),首先從作圖上不知道怎樣做。但是學(xué)生學(xué)過(guò)有理數加法中的異號兩數相加:“異號兩數相加,用較大的絕對值減去較小的絕對值,符號取絕對值較大的數的符號!鳖(lèi)比異號兩數相加,他們會(huì )用較長(cháng)的模減去較短的模,方向取模較長(cháng)的向量的方向。具體做法由老師引導學(xué)生嘗試運用三角形法則去做,發(fā)現結論正確。

  反思過(guò)程,學(xué)生自然會(huì )想到方向相同的兩個(gè)向量相加,類(lèi)似于同號兩數相加。這說(shuō)明兩個(gè)共線(xiàn)向量相加依然可用三角形法則。對有如下規定:

  +

  =

  +

  =

  通過(guò)以上幾個(gè)環(huán)節的討論,可以作個(gè)簡(jiǎn)單的小結:兩個(gè)不共線(xiàn)向量相加,可采用平行四邊形法則或三角形法則,而兩個(gè)共線(xiàn)向量相加在本課所學(xué)方法中只能用三角形法則,說(shuō)明三角形法則適用于任意兩個(gè)向量相加。

  設計意圖:通過(guò)對共線(xiàn)向量加法的探討,拓寬了學(xué)生對三角形法則的認識,使得不同位置的向量相加都有了依據,并且采用類(lèi)比的方法,使學(xué)生對共線(xiàn)向量的加法,尤其是方向相反的兩個(gè)向量的加法更易于理解,可以化解難點(diǎn)。

 。4)向量加法的運算律

 、俳粨Q律:交換律是利用平行四邊形法則的圖形,又結合三角形法則得出,理解起來(lái)沒(méi)什么困難,再一次強化了學(xué)生對兩個(gè)法則特點(diǎn)及實(shí)質(zhì)的認識。

 、诮Y合律:結合律是通過(guò)三個(gè)向量首尾相接,先加前兩個(gè)再與第三個(gè)向量相加,和先加后兩個(gè)向量再與第一個(gè)向量相加所得結果相同。

  接下來(lái)是對應的兩個(gè)練習,運用交換律與結合律計算向量的和。

  設計意圖:運算律的引入給加法運算帶來(lái)方便,從后面的練習中學(xué)生能夠體會(huì )到這點(diǎn)。由結合律還使學(xué)生發(fā)現,多個(gè)向量相加,同樣可以運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個(gè)向量的起點(diǎn)指向最后一個(gè)向量的終點(diǎn)。這樣使學(xué)生明白,三角形法則適用于任意多個(gè)向量相加。

  3、小結

  先由學(xué)生小結,檢查學(xué)生對本課重要知識的認識,也給學(xué)生一個(gè)概括本節知識的機會(huì ),然后用課件展示小結內容,使學(xué)生印象更深。

 。1)平行四邊形法則:起點(diǎn)相同,適用于不共線(xiàn)向量的求和。

 。2)三角形法則首尾相接,適用于任意多個(gè)向量的求和。

 。3)運算律

  交換律:

  +

  =

  +

  結合律:(

  +

 。+

  =

  +(

  +

 。

  4、作業(yè):P91,A組1、2、3。

  《向量的加法》評課稿

  本節所授內容基本與原先設想一致,評略得當,重點(diǎn)突出,難點(diǎn)化解。在兩個(gè)加法則的引入、講解及運用的處理方法、時(shí)間安排都把握得比較好,能夠引導學(xué)生積極主動(dòng)地探索平行四邊形法則和三角形法則,使學(xué)生對兩個(gè)加法法則形成了正確的認識,留下了深刻的印象,通過(guò)反饋練習,可以看出學(xué)生對兩個(gè)法則的運用掌握的比較好,比較完整地實(shí)現了教學(xué)目標。

  本節課的教學(xué)方法運用比較合理:采取了類(lèi)比、探究、講練結合及多媒體技術(shù)等多種方法。對數學(xué)課來(lái)說(shuō),本節課最顯著(zhù)的特點(diǎn)是將全部板書(shū)都移到了課件上,對我來(lái)說(shuō),是一次嘗試,因為以前,我認為數學(xué)課沒(méi)必要用課件,對全部利用課件上課更是不能接受。但是這次講課改變了我的看法。從學(xué)生的反饋情況來(lái)看,這樣處理對教學(xué)效果沒(méi)有什么不良影響,反而使學(xué)生能更直觀(guān)地理解兩個(gè)加法法則和運算律,通過(guò)課件中的向量的平移,加深了學(xué)生對上節課所學(xué)的“相等向量”的概念的理解,也加大了課堂容量,還沒(méi)有擁擠之感。從學(xué)生對內容小結的敘述看,沒(méi)有板書(shū),并沒(méi)有妨礙本節內容在學(xué)生腦海中留下的印象。原先的設計中,板書(shū)設計也有,打在教案的后面。

  通過(guò)這節課的講授,我收獲很多:首先,從課程的構思上,沒(méi)有按照教參建議及網(wǎng)上普遍的編排方法先講三角形法則,而是先由學(xué)生學(xué)過(guò)的力的合成引入了平行四邊形法則,由此又引入三角形法則,效果也不錯?梢(jiàn),對教材的處理確實(shí)要根據學(xué)生情況,靈活裁剪,不能生搬硬套。

  其次,通過(guò)這節課我感到,對有些與圖形聯(lián)系較多的課程,使用課件講解簡(jiǎn)便易行,關(guān)鍵是要根據教學(xué)設計制作合適的課件,并且合理使用。

  本節缺憾也很多。首先,學(xué)生活動(dòng)還是偏少,沒(méi)有充分、全面地調動(dòng)學(xué)生熱情。其次,語(yǔ)言不夠精煉,有時(shí)比較啰嗦,也耽誤了時(shí)間,第三,學(xué)生發(fā)言時(shí),好打斷學(xué)生,總覺(jué)得學(xué)生說(shuō)得不清楚,搶學(xué)生話(huà)頭,打擊了學(xué)生課堂參與的積極性,很不好。

  以上是我對這節課的反思,不到之處,請大家指點(diǎn)。

高中數學(xué)說(shuō)課稿10

  各位評委老師,大家好!

  我是本科數學(xué)**號選手,今天我要進(jìn)行說(shuō)課的課題是高中數學(xué)必修一第一章第三節第一課時(shí)《函數單調性與最大(。┲怠罚ǹ梢栽谶@時(shí)候板書(shū)課題,以緩解緊張)。我將從教材分析;教學(xué)目標分析;教法、學(xué)法;教學(xué)過(guò)程;教學(xué)評價(jià)五個(gè)方面來(lái)陳述我對本節課的設計方案。懇請在座的專(zhuān)家評委批評指正。

  一、教材分析

  1、 教材的地位和作用

 。1)本節課主要對函數單調性的學(xué)習;

 。2)它是在學(xué)習函數概念的基礎上進(jìn)行學(xué)習的,同時(shí)又為基本初等函數的學(xué)習奠定了基礎,所以他在教材中起著(zhù)承前啟后的重要作用;(可以看看這一課題的前后章節來(lái)寫(xiě))

 。3)它是歷年高考的熱點(diǎn)、難點(diǎn)問(wèn)題

 。ǜ鶕唧w的課題改變就行了,如果不是熱點(diǎn)難點(diǎn)問(wèn)題就刪掉)

  2、 教材重、難點(diǎn)

  重點(diǎn):函數單調性的定義

  難點(diǎn):函數單調性的證明

  重難點(diǎn)突破:在學(xué)生已有知識的基礎上,通過(guò)認真觀(guān)察思考,并通過(guò)小組合作探究的辦法來(lái)實(shí)現重難點(diǎn)突破。(這個(gè)必須要有)

  3.學(xué)情分析

  高一學(xué)生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過(guò)渡到理性思維,并由此向邏輯思維發(fā)展,但學(xué)生思維不成熟、不嚴密、意志力薄弱,故而整個(gè)教學(xué)環(huán)節總是創(chuàng )設恰當的問(wèn)題情境,引導學(xué)生積極思考,培養他們的邏輯思維能力。從學(xué)生的認知結構來(lái)看,他們只能根據函數的圖象觀(guān)察出“隨著(zhù)自變量的增大函數值增大”等變化趨勢,所以在教學(xué)中要充分利用好函數圖象的直觀(guān)性,發(fā)揮好多媒體教學(xué)的優(yōu)勢;由于學(xué)生在概念的掌握上缺少系統性、嚴謹性,在教學(xué)中注意加強.

  二、教學(xué)目標

  知識目標:

 。1)函數單調性的定義

 。2)函數單調性的證明

  能力目標:

  培養學(xué)生全面分析、抽象和概括的能力,以及了解由簡(jiǎn)單到復雜,由特殊到一般的化歸思想

  情感目標:

  培養學(xué)生勇于探索的精神和善于合作的意識

 。ㄟ@樣的教學(xué)目標設計更注重教學(xué)過(guò)程和情感體驗,立足教學(xué)目標多元化)

  三、教法學(xué)法分析

  1、教法分析

  “教必有法而教無(wú)定法”,只有方法得當才會(huì )有效。新課程標準之處教師是教學(xué)的組織者、引導者、合作者,在教學(xué)過(guò)程要充分調動(dòng)學(xué)生的積極性、主動(dòng)性。本著(zhù)這一原則,在教學(xué)過(guò)程中我主要采用以下教學(xué)方法:開(kāi)放式探究法、啟發(fā)式引導法、小組合作討論法、反饋式評價(jià)法

  2、學(xué)法分析

  “授人以魚(yú),不如授人以漁”,最有價(jià)值的知識是關(guān)于方法的只是。學(xué)生作為教學(xué)活動(dòng)的主題,在學(xué)習過(guò)程中的參與狀態(tài)和參與度是影響教學(xué)效果最重要的因素。在學(xué)法選擇上,我主要采用:自主探究法、觀(guān)察發(fā)現法、合作交流法、歸納總結法。

 。ㄇ叭糠钟脮r(shí)控制在三分鐘以?xún),可適當刪減)

  四、教學(xué)過(guò)程

  1、以舊引新,導入新知

  通過(guò)課前小研究讓學(xué)生自行繪制出一次函數f(x)=x和二次函數f(x)=x^2的圖像,并觀(guān)察函數圖象的特點(diǎn),總結歸納。通過(guò)課上小組討論歸納,引導學(xué)生發(fā)現,教師總結:一次函數f(x)=x的圖像在定義域是直線(xiàn)上升的,而二次函數f(x)=x^2的圖像是一個(gè)曲線(xiàn),在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當添加手勢,這樣看起來(lái)更自然)

  2、創(chuàng )設問(wèn)題,探索新知

  緊接著(zhù)提出問(wèn)題,你能用二次函數f(x)=x^2表達式來(lái)描述函數在(-∞,0)的圖像?教師總結,并板書(shū),揭示函數單調性的定義,并注意強調可以利用作差法來(lái)判斷這個(gè)函數的單調性。

  讓學(xué)生模仿剛才的表述法來(lái)描述二次函數f(x)=x^2在(0,+∞)的圖像,并找個(gè)別同學(xué)起來(lái)作答,規范學(xué)生的數學(xué)用語(yǔ)。

  讓學(xué)生自主學(xué)習函數單調區間的定義,為接下來(lái)例題學(xué)習打好基礎。

  3、 例題講解,學(xué)以致用

  例1主要是對函數單調區間的鞏固運用,通過(guò)觀(guān)察函數定義在(—5,5)的圖像來(lái)找出函數的單調區間。這一例題主要以學(xué)生個(gè)別回答為主,學(xué)生回答之后通過(guò)互評來(lái)糾正答案,檢查學(xué)生對函數單調區間的掌握。強調單調區間一般寫(xiě)成半開(kāi)半閉的形式

  例題講解之后可讓學(xué)生自行完成課后練習4,以學(xué)生集體回答的方式檢驗學(xué)生的學(xué)習效果。

  例2是將函數單調性運用到其他領(lǐng)域,通過(guò)函數單調性來(lái)證明物理學(xué)的波意爾定理。這是歷年高考的熱點(diǎn)跟難點(diǎn)問(wèn)題,這一例題要采用教師板演的方式,來(lái)對例題進(jìn)行證明,以規范總結證明步驟。一設二差三化簡(jiǎn)四比較,注意要把f(x1)-f(x2)化簡(jiǎn)成和差積商的形式,再比較與0的大小。

  學(xué)生在熟悉證明步驟之后,做課后練習3,并以小組為單位找部分同學(xué)上臺板演,其他同學(xué)在下面自行完成,并通過(guò)自評、互評檢查證明步驟。

  4、歸納小結

  本節課我們主要學(xué)習了函數單調性的定義及證明過(guò)程,并在教學(xué)過(guò)程中注重培養學(xué)生勇于探索的精神和善于合作的意識。

  5、作業(yè)布置

  為了讓學(xué)生學(xué)習不同的數學(xué),我將采用分層布置作業(yè)的方式:一組 習題1.3A組1、2、3 ,二組 習題1.3A組2、3、B組1、2

  6、板書(shū)設計

  我力求簡(jiǎn)潔明了地概括本節課的學(xué)習要點(diǎn),讓學(xué)生一目了然。

 。ㄟ@部分最重要用時(shí)六到七分鐘,其中定義講解跟例題講解一定要說(shuō)明學(xué)生的活動(dòng))

  五、教學(xué)評價(jià)

  本節課是在學(xué)生已有知識的基礎上學(xué)習的,在教學(xué)過(guò)程中通過(guò)自主探究、合作交流,充分調動(dòng)學(xué)生的積極性跟主動(dòng)性,及時(shí)吸收反饋信息,并通過(guò)學(xué)生的自評、互評,讓內部動(dòng)機和外界刺激協(xié)調作用,促進(jìn)其數學(xué)素養不斷提高。

高中數學(xué)說(shuō)課稿11

  一、教材分析:

  1、教材的地位與作用:

  線(xiàn)性規劃是運籌學(xué)的一個(gè)重要分支,在實(shí)際生活中有著(zhù)廣泛的應用。本節內容是在學(xué)習了不等式、直線(xiàn)方程的基礎上,利用不等式和直線(xiàn)方程的有關(guān)知識展開(kāi)的,它是對二元一次不等式的深化和再認識、再理解。通過(guò)這一部分的學(xué)習,使學(xué)生進(jìn)一步了解數學(xué)在解決實(shí)際問(wèn)題中的應用,體驗數形結合和轉化的思想方法,培養學(xué)生學(xué)習數學(xué)的興趣、應用數學(xué)的意識和解決實(shí)際問(wèn)題的能力。

  2、教學(xué)重點(diǎn)與難點(diǎn):

  重點(diǎn):畫(huà)可行域;在可行域內,用圖解法準確求得線(xiàn)性規劃問(wèn)題的最優(yōu)解。

  難點(diǎn):在可行域內,用圖解法準確求得線(xiàn)性規劃問(wèn)題的最優(yōu)解。

  二、目標分析:

  在新課標讓學(xué)生經(jīng)歷“學(xué)數學(xué)、做數學(xué)、用數學(xué)”的理念指導下,本節課的教學(xué)目標分設為知識目標、能力目標和情感目標。

  知識目標:

  1、了解線(xiàn)性規劃的意義,了解線(xiàn)性約束條件、線(xiàn)性目標函數、可行解、可行

  域和最優(yōu)解等概念;

  2、理解線(xiàn)性規劃問(wèn)題的圖解法;

  3、會(huì )利用圖解法求線(xiàn)性目標函數的最優(yōu)解.

  能力目標:

  1、在應用圖解法解題的過(guò)程中培養學(xué)生的觀(guān)察能力、理解能力。

  2、在變式訓練的過(guò)程中,培養學(xué)生的分析能力、探索能力。

  3、在對具體事例的感性認識上升到對線(xiàn)性規劃的理性認識過(guò)程中,培養學(xué)生運用數形結合思想解題的能力和化歸能力。

  情感目標:

  1、讓學(xué)生體驗數學(xué)來(lái)源于生活,服務(wù)于生活,體驗數學(xué)在建設節約型社會(huì )中的作用,品嘗學(xué)習數學(xué)的樂(lè )趣。

  2、讓學(xué)生體驗數學(xué)活動(dòng)充滿(mǎn)著(zhù)探索與創(chuàng )造,培養學(xué)生勤于思考、勇于探索的精神;

  3、讓學(xué)生學(xué)會(huì )用運動(dòng)觀(guān)點(diǎn)觀(guān)察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關(guān)系,滲透辯證唯物主義認識論的思想。

  三、過(guò)程分析:

  數學(xué)教學(xué)是數學(xué)活動(dòng)的教學(xué)。因此,我將整個(gè)教學(xué)過(guò)程分為以下六個(gè)教學(xué)環(huán)節:1、創(chuàng )設情境,提出問(wèn)題;2、分析問(wèn)題,形成概念;3、反思過(guò)程,提煉方法;4、變式演練,深入探究;5、運用新知,解決問(wèn)題;6、歸納總結,鞏固提高。

  1、創(chuàng )設情境,提出問(wèn)題:

  在課堂教學(xué)的開(kāi)始,我以一組生動(dòng)的動(dòng)畫(huà)(配圖片)描述出在神奇的數學(xué)王國里,有一種算法廣泛應用于工農業(yè)、軍事、交通運輸、決策管理與規劃等領(lǐng)域,應用它已節約了億萬(wàn)財富,還被列為20世紀對科學(xué)發(fā)展和工程實(shí)踐影響最大的十大算法之一。它為何有如此大的魅力?它又是怎樣的一種神奇算法呢?我以景激情,以情激思,點(diǎn)燃學(xué)生的求知欲,引領(lǐng)學(xué)生進(jìn)入學(xué)習情境。

高中數學(xué)說(shuō)課稿12

  尊敬的各位評委、各位老師大家好!我說(shuō)課的題目是《直線(xiàn)的點(diǎn)斜式方程》,選自人民教育出版社普通高中課程標準試驗教科書(shū)數學(xué)必修2(A版),是第三章直線(xiàn)與方程中的第2節的第一課時(shí)3.2.1直線(xiàn)的點(diǎn)斜式方程的內容。下面我將從教學(xué)背景、教學(xué)方法、教學(xué)過(guò)程及教學(xué)特點(diǎn)等四個(gè)方面具體說(shuō)明。

  一、教學(xué)背景的分析

  1.教材分析

  直線(xiàn)的方程是學(xué)生在初中學(xué)習了一次函數的概念和圖象及高中學(xué)習了直線(xiàn)的斜率后進(jìn)行研究的。直線(xiàn)的方程屬于解析幾何學(xué)的基礎知識,是研究解析幾何學(xué)的開(kāi)始,對后續研究?jì)蓷l直線(xiàn)的位置關(guān)系、圓的方程、直線(xiàn)與圓的位置關(guān)系、圓錐曲線(xiàn)等內容,無(wú)論在知識上還是方法上都是地位顯要,作用非同尋常,是本章的重點(diǎn)內容之一!爸本(xiàn)的點(diǎn)斜式方程”可以說(shuō)是直線(xiàn)的方程的形式中最重要、最基本的形式,在此花多大的時(shí)間和精力都不為過(guò)。直線(xiàn)作為常見(jiàn)的最簡(jiǎn)單的曲線(xiàn),在實(shí)際生活和生產(chǎn)實(shí)踐中有著(zhù)廣泛的應用。同時(shí)在這一節中利用坐標法來(lái)研究曲線(xiàn)的數形結合、幾何直觀(guān)等數學(xué)思想將貫穿于我們整個(gè)高中數學(xué)教學(xué)。

  2.學(xué)情分析

  我校的生源較差,學(xué)生的基礎和學(xué)習習慣都有待加強。又由于剛開(kāi)始學(xué)習解析幾何,第一次用坐標法來(lái)求曲線(xiàn)的方程,在學(xué)習過(guò)程中,會(huì )出現“數”與“形”相互轉化的困難。另外我校學(xué)生在探究問(wèn)題的能力,合作交流的意識等方面更有待加強。

  根據上述教材分析,考慮到學(xué)生已有的認知結構和心理特征,我制定如下教學(xué)目標:

  3.教學(xué)目標

  (1)了解直線(xiàn)的方程的概念和直線(xiàn)的點(diǎn)斜式方程的推導過(guò)程及方法;

  (2)明確點(diǎn)斜式、斜截式方程的形式特點(diǎn)和適用范圍;初步學(xué)會(huì )準確地使用直線(xiàn)的點(diǎn)斜式、斜截式方程 ;

  (3)從實(shí)例入手,通過(guò)類(lèi)比、推廣、特殊化等,使學(xué)生體會(huì )從特殊到一般再到特殊的認知規律;

  (4)提倡學(xué)生用舊知識解決新問(wèn)題,通過(guò)體會(huì )直線(xiàn)的斜截式方程與一次函數的關(guān)系等活動(dòng),培養學(xué)生主動(dòng)探究知識、合作交流的意識,并初步了解數形結合在解析幾何中的應用。

  4. 教學(xué)重點(diǎn)與難點(diǎn)

  (1)重點(diǎn): 直線(xiàn)點(diǎn)斜式、斜截式方程的特點(diǎn)及其初步應用。

  (2)難點(diǎn):直線(xiàn)的方程的概念,點(diǎn)斜式方程的推導及點(diǎn)斜式、斜截式方程的應用。

  二、教法學(xué)法分析

  1.教法分析:根據學(xué)情,為了能調動(dòng)學(xué)生學(xué)習的積極性,本節課采用“實(shí)例引導的啟發(fā)式”問(wèn)題教學(xué)法。幫助學(xué)生將幾何問(wèn)題代數化,用代數的語(yǔ)言描述直線(xiàn)的幾何要素及其關(guān)系,進(jìn)而將直線(xiàn)的問(wèn)題轉化為直線(xiàn)方程的問(wèn)題,通過(guò)對直線(xiàn)的方程的研究,最終解決有關(guān)直線(xiàn)的一些簡(jiǎn)單的問(wèn)題。另外可以恰當的利用多媒體課件進(jìn)行輔助教學(xué),激發(fā)學(xué)生的學(xué)習興趣。

  2.學(xué)法分析:學(xué)生從問(wèn)題中嘗試、總結、質(zhì)疑、運用,體會(huì )學(xué)習數學(xué)的樂(lè )趣;通過(guò)推導直線(xiàn)的點(diǎn)斜式方程的學(xué)習,要了解用坐標法求方程的思想;通過(guò)一個(gè)點(diǎn)和方向可以確定一條直線(xiàn),進(jìn)而可求出直線(xiàn)的點(diǎn)斜式方程,要能體會(huì )“形”與“數”的轉化思想。

  下面我就對具體的教學(xué)過(guò)程和設計加以說(shuō)明:

  三、教學(xué)過(guò)程的設計及實(shí)施

  整個(gè)教學(xué)過(guò)程是由六個(gè)問(wèn)題組成,共分為四個(gè)環(huán)節,學(xué)習或涉及四個(gè)概念:

  溫故知新,澄清概念----直線(xiàn)的方程

  深入探究,獲得新知--------點(diǎn)斜式

  拓展知識,再獲新知--------斜截式

  小結引申,思維延續--------兩點(diǎn)式

  平面上的點(diǎn)可以用坐標表示,直線(xiàn)的傾斜程度可以用斜率表示,那么平面上的直線(xiàn)如何表示呢?這就是本節要學(xué)習的內容。

  (一)溫故知新,澄清概念----直線(xiàn)的方程

  問(wèn)題一:畫(huà)出一次函數y=2x+1的圖象;y=2x+1是一個(gè)方程嗎?若是,那么方程的解與圖象上的點(diǎn)的坐標有何關(guān)系?

  [學(xué)生活動(dòng)] 通過(guò)動(dòng)手畫(huà)圖,思考并嘗試用語(yǔ)言進(jìn)行初步的表述。

  [教師活動(dòng)] 對于不同學(xué)生的表述進(jìn)行分析、歸納,用規范的語(yǔ)言對方程和直線(xiàn)的方程進(jìn)行描述。

  [設計意圖]從學(xué)生熟知的舊知識出發(fā)澄清直線(xiàn)的方程的概念,試圖做到“用學(xué)生已有的數學(xué)知識去學(xué)數學(xué)”,從而突破難點(diǎn)。通過(guò)對這個(gè)問(wèn)題的研究,一方面認識到以方程的解為坐標的點(diǎn)在直線(xiàn)上,另一方面認識到直線(xiàn)上的點(diǎn)的坐標滿(mǎn)足方程;從而使同學(xué)意識到直線(xiàn)可以由直線(xiàn)上任意一點(diǎn)P(x,y)的坐標x和y之間的等量關(guān)系來(lái)表示。

  問(wèn)題二:若直線(xiàn)經(jīng)過(guò)點(diǎn)A(-1, 3),斜率為-2,點(diǎn)P在直線(xiàn)l上。

  (1) 若點(diǎn)P在直線(xiàn)l上從A點(diǎn)開(kāi)始運動(dòng),橫坐標增加1時(shí),點(diǎn)P的坐標是 ;

  (2)畫(huà)出直線(xiàn)l,你能求出直線(xiàn)l的方程嗎?

  (3)若點(diǎn)P在直線(xiàn)l上運動(dòng),設P點(diǎn)的坐標為(x,y),你會(huì )有什么方法找到x,y滿(mǎn)足的關(guān)系式?

  [學(xué)生活動(dòng)]學(xué)生獨立思考5分鐘,必要的話(huà)可進(jìn)行分組討論、合作交流。

  [教師活動(dòng)]巡視?隙▽W(xué)生的各種方法及大膽嘗試的行為;并引導學(xué)生觀(guān)察發(fā)現,得到當點(diǎn)P在直線(xiàn)l上運動(dòng)時(shí)(除點(diǎn) A外),點(diǎn)P與定點(diǎn)A(-1, 3)所確定的直線(xiàn)的斜率恒等于-2,體會(huì )“動(dòng)中有靜”的思維策略。

  [設計意圖]復習斜率公式;待定系數法;初步體會(huì )坐標法。同時(shí)引導學(xué)生注意為什么要把分式化簡(jiǎn)?(若不化簡(jiǎn),就少一點(diǎn)),感受數學(xué)簡(jiǎn)潔的美感和嚴謹性。還要指出這樣的事實(shí):當點(diǎn)P在直線(xiàn)l上運動(dòng)時(shí),P的坐標(x,y)滿(mǎn)足方程2x+y-1=0.反過(guò)來(lái),以方程2x+y-1=0的解為坐標的點(diǎn)在直線(xiàn)l上。把學(xué)生的思維引到用坐標法研究直線(xiàn)的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節。

  (二)深入探究,獲得新知----點(diǎn)斜式

  問(wèn)題三: ① 若直線(xiàn)l經(jīng)過(guò)點(diǎn)P0(x0,y0),且斜率為k,求直線(xiàn)l的方程。

 、谥本(xiàn)的點(diǎn)斜式方程能否表示經(jīng)過(guò)P0(x0,y0)的所有直線(xiàn)?

  [學(xué)生活動(dòng)] ①學(xué)生敘述,老師板書(shū),強調斜率公式與點(diǎn)斜式的區別。 ②指導學(xué)生用筆轉一轉不難發(fā)現,當直線(xiàn)l的傾斜角α=90°時(shí),斜率k不存在,當然不存在點(diǎn)斜式方程;討論k=0的情況;觀(guān)察并總結點(diǎn)斜式方程的特征。

  [設計意圖] 由特殊到一般的學(xué)習思路,突破難點(diǎn),培養學(xué)生的歸納概括能力。通過(guò)對這個(gè)問(wèn)題的探究使學(xué)生獲得直線(xiàn)點(diǎn)斜式方程;由②知:當直線(xiàn)斜率k不存在時(shí),不能用點(diǎn)斜式方程表示直線(xiàn),培養思維的嚴謹性,這時(shí)直線(xiàn)l與y軸平行,它上面的每一點(diǎn)的橫坐標都等于x0,直線(xiàn)l的方程是:x=x0;通過(guò)學(xué)生的觀(guān)察討論總結,明確點(diǎn)斜式方程的形式特點(diǎn)和適用范圍,通過(guò)下面的例題和基礎練習,突破重難點(diǎn)。

  問(wèn)題四:分別求經(jīng)過(guò)點(diǎn)且滿(mǎn)足下列條件的直線(xiàn)的方程

  (1) 斜率;(2)傾斜角; (3)與軸平行 ;(4)與軸垂直。

  [練習]P95.1、2。

  [學(xué)生活動(dòng)]學(xué)生獨立完成并展示或敘述,老師點(diǎn)評。

  [設計意圖]充分用好教材的例題和習題,因為這些題都是專(zhuān)家精心編排的,充分體現必要性及合理性;做到及時(shí)反饋,便于反思本環(huán)節的教學(xué),指導下個(gè)環(huán)節的安排;突破重點(diǎn)內容后,進(jìn)入第三環(huán)節。

  (三)拓展知識,再獲新知----斜截式

  問(wèn)題五:(1)一條直線(xiàn)與y軸交于點(diǎn)(0,3),直線(xiàn)的斜率為2,求這條直線(xiàn)的方程。

  (2)若直線(xiàn)l斜率為k,且與y軸的交點(diǎn)是 P(0,b),求直線(xiàn)l的方程。

  [學(xué)生活動(dòng)]學(xué)生獨立完成后口述,教師板書(shū)。

  [設計意圖] 由一般到特殊再到一般,培養學(xué)生的推理能力,同時(shí)引出截距的概念及斜截式方程,強調截距不是距離。類(lèi)比點(diǎn)斜式明確斜截式方程的形式特點(diǎn)和適用范圍及幾何意義,并討論其與一次函數的關(guān)系。通過(guò)下面的基礎練習,突破重點(diǎn)。

  [練習]P95.3。

  [設計意圖]充分用好教材習題,及時(shí)反饋本環(huán)節的教學(xué)情況,指導下個(gè)環(huán)節的安排。

  (四)小結引申,思維延續----兩點(diǎn)式

  課堂小結 1、有哪些收獲?(點(diǎn)斜式方程:;斜截式方程:;求直線(xiàn)方程的方法:公式法、等斜率法、待定系數法。)

  2、哪些地方還沒(méi)有學(xué)好?

  問(wèn)題六:(1)直線(xiàn)l過(guò)(1,0)點(diǎn),且與直線(xiàn)平行,求直線(xiàn)l的方程。

  (2)直線(xiàn)l過(guò)點(diǎn)(2,-1)和點(diǎn)(3,-3),求直線(xiàn)l的方程。

  [學(xué)生活動(dòng)]學(xué)生獨立思考并嘗試自主完成,可以相互討論,探討解題思路。

  [教師活動(dòng)]教師深入學(xué)生中,與學(xué)生交流,了解學(xué)生思考問(wèn)題的進(jìn)展過(guò)程,有時(shí)間的話(huà),可以讓學(xué)生口述解題思路,也可以投影學(xué)生的證明過(guò)程,糾正出現的錯誤,規范書(shū)寫(xiě)的格式;沒(méi)時(shí)間就布置分層作業(yè)。

  [設計意圖](1)小題與上一節的平行綜合,學(xué)生應該有思路求出方程;(2)小題解決方法較多,預設有利用公式法、等斜率法、待定系數法,讓好一點(diǎn)的學(xué)生有一些發(fā)散思維的機會(huì ),以及課后學(xué)習的空間,使探究氣氛有一點(diǎn)高潮。另外也為下節課研究直線(xiàn)的兩點(diǎn)式方程作了重要的準備。

  分層作業(yè) 必做題:P100.A組:1.(1)(2)(3)、5.

  選做題:P100.A組:1.(4)(5)(6).

  [設計意圖]通過(guò)分層作業(yè),做到因材施教,使不同的學(xué)生在數學(xué)上得到不同的發(fā)展,讓每一個(gè)學(xué)生都得到符合自身實(shí)踐的感悟,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿(mǎn)的學(xué)習興趣,促進(jìn)學(xué)生自主發(fā)展。

  四、教學(xué)特點(diǎn)分析

  (一)實(shí)例引導。在字母運算、公式推導之前,總是用實(shí)例作為鋪墊,使學(xué)生有學(xué)習知識的可能和興趣,關(guān)注學(xué)困生的成長(cháng)與發(fā)展。

  (二)啟發(fā)式教學(xué)。教學(xué)中總是以提問(wèn)的方式敘述所學(xué)內容,如:1.直角坐標系內的所有直線(xiàn)都有點(diǎn)斜式方程嗎?2.截距是距離嗎?它可以是負數嗎?3.你會(huì )求直線(xiàn)在軸上的截距嗎?4.觀(guān)察方程 ,它的形式具有什么特點(diǎn)?它與我們學(xué)過(guò)的一次函數有什么關(guān)系?等等。啟發(fā)學(xué)生的思維,作好與學(xué)生的對話(huà)與交流活動(dòng)。

  (三)注重自主探究。設計問(wèn)題鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終。教師總是站在學(xué)生思維的最近發(fā)展區上,布設了由淺入深的學(xué)習環(huán)境突破重點(diǎn)、難點(diǎn),引導學(xué)生逐步發(fā)現知識的形成過(guò)程。設計了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題六的第(2)問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生創(chuàng )造充分的探究空間,學(xué)生在交流成果的過(guò)程中,高效的完成教學(xué)任務(wù)。

高中數學(xué)說(shuō)課稿13

  一、教材分析

  集合概念及其基本理論,稱(chēng)為集合論,是近、現代數學(xué)的一個(gè)重要的基礎,一方面,許多重要的數學(xué)分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學(xué)思想,在越來(lái)越廣泛的領(lǐng)域種得到應用。

  本節課主要分為兩個(gè)部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關(guān)系。

  二、教學(xué)目標

  1、學(xué)習目標

 。1)通過(guò)實(shí)例,了解集合的含義,體會(huì )元素與集合之間的關(guān)系以及理解“屬

  于”關(guān)系;

 。2)能選擇自然語(yǔ)言、圖形語(yǔ)言、集合語(yǔ)言(列舉法或描述法)描述不同的具體問(wèn)題,感受集合語(yǔ)言的意義和作用;

  2、能力目標

 。1)能夠把一句話(huà)一個(gè)事件用集合的方式表示出來(lái)。

 。2)準確理解集合與及集合內的元素之間的關(guān)系。

  3、情感目標

  通過(guò)本節的把實(shí)際事件用集合的方式表示出來(lái),從而培養數學(xué)敏感性,了 解到數學(xué)于生活中。

  三、教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn) 集合的基本概念與表示方法;

  難點(diǎn) 運用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡(jiǎn)單的集合;

  四、教學(xué)方法

 。1)本課將采用探究式教學(xué),讓學(xué)生主動(dòng)去探索,激發(fā)學(xué)生的學(xué)習興趣。并分層教學(xué),這樣可顧及到全體學(xué)生,達到優(yōu)生得到培養,后進(jìn)生也有所收獲的效果;

 。2)學(xué)生在老師的引導下,通過(guò)閱讀教材,自主學(xué)習、思考、交流、討論和概括,從而完成本節課的教學(xué)目標。

  五、學(xué)習方法

 。1)主動(dòng)學(xué)習法:舉出例子,提出問(wèn)題,讓學(xué)生在獲得感性認識的同時(shí),

  教師層層深入,啟發(fā)學(xué)生積極思維,主動(dòng)探索知識,培養學(xué)生思維想象 的綜合能力。

 。2)反饋補救法:在練習中,注意觀(guān)察學(xué)生對學(xué)習的反饋情況,以實(shí)現“培

  優(yōu)扶差,滿(mǎn)足不同!

  六、教學(xué)思路

  具體的思路如下

  復習的引入:講一些集合的相關(guān)數學(xué)及相關(guān)數學(xué)家的經(jīng)歷故事!這可以讓學(xué)生更加了解數學(xué)史從何使學(xué)生對數學(xué)更加感興趣,有助于上課的效率!因為時(shí)間關(guān)系這里我就不說(shuō)相關(guān)數學(xué)史咯。

  一、 引入課題

  軍訓前學(xué)校通知:8月15日8點(diǎn),高一年段在體育館集合進(jìn)行軍訓動(dòng)員;試問(wèn)這個(gè)通知的對象是全體的高一學(xué)生還是個(gè)別學(xué)生?

  在這里,集合是我們常用的一個(gè)詞語(yǔ),我們感興趣的是問(wèn)題中某些特定(是高一而不是高二、高三)對象的總體,而不是個(gè)別的對象,為此,我們將學(xué)習一個(gè)新的概念——集合,即是一些研究對象的總體。

  二、 正體部分

  學(xué)生閱讀教材,并思考下列問(wèn)題:

 。1)集合有那些概念?

 。2)集合有那些符號?

 。3)集合中元素的特性是什么?

 。4)如何給集合分類(lèi)?

  (一)集合的有關(guān)概念

 。1)對象:我們可以感覺(jué)到的客觀(guān)存在以及我們思想中的事物或抽象符號,

  都可以稱(chēng)作對象.

 。2)集合:把一些能夠確定的不同的對象看成一個(gè)整體,就說(shuō)這個(gè)整體是由

  這些對象的全體構成的集合.

 。3)元素:集合中每個(gè)對象叫做這個(gè)集合的元素.

  集合通常用大寫(xiě)的拉丁字母表示,如A、B、C、??元素通常用小寫(xiě)的拉丁字母表示,如a、b、c、??

  1. 思考:課本P3的思考題,并再列舉一些集合例子和不能構成集合的例子,

  對學(xué)生的例子予以討論、點(diǎn)評,進(jìn)而講解下面的問(wèn)題。

  2、元素與集合的關(guān)系

 。1)屬于:如果a是集合A的元素,就說(shuō)a屬于A(yíng),記作a∈A。(舉例)集合A={2,3,4,6,9}a=2 因此我們知道 a∈A

 。2)不屬于:如果a不是集合A的元素,就說(shuō)a不屬于A(yíng),記作a?A

  要注意“∈”的方向,不能把a∈A顛倒過(guò)來(lái)寫(xiě). (舉例)

  集合A={3,4,6,9}a=2 因此我們知道a?A

  3、集合中元素的特性

 。1)確定性:給定一個(gè)集合,任何對象是不是這個(gè)集合的元素是確定的了.

 。2)互異性:集合中的元素一定是不同的.

 。3)無(wú)序性:集合中的元素沒(méi)有固定的順序.

  4、集合分類(lèi)

  根據集合所含元素個(gè)屬不同,可把集合分為如下幾類(lèi):

 。1)把不含任何元素的集合叫做空集Ф

 。2)含有有限個(gè)元素的集合叫做有限集

 。3)含有無(wú)窮個(gè)元素的集合叫做無(wú)限集

  注:應區分?,{?},{0},0等符號的含義

  5、常用數集及其表示方法

 。1)非負整數集(自然數集):全體非負整數的集合.記作N

 。2)正整數集:非負整數集內排除0的集.記作N*或N+

 。3)整數集:全體整數的集合.記作Z

 。4)有理數集:全體有理數的集合.記作Q

 。5)實(shí)數集:全體實(shí)數的集合.記作R

  注:(1)自然數集包括數0.

 。2)非負整數集內排除0的集.記作N*或N+,Q、Z、R等其它數集內排

  除0的集,也這樣表示,例如,整數集內排除0的集,表示成Z*

  (二)集合的表示方法

  我們可以用自然語(yǔ)言來(lái)描述一個(gè)集合,但這將給我們帶來(lái)很多不便,除此之外還常用列舉法和描述法來(lái)表示集合。

 。1) 列舉法:把集合中的元素一一列舉出來(lái),寫(xiě)在大括號內。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;

  例1.(課本例1)

  思考2,引入描述法

  說(shuō)明:集合中的元素具有無(wú)序性,所以用列舉法表示集合時(shí)不必考慮元素的順序。

 。2) 描述法:把集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號{}內。 具體方法:在大括號內先寫(xiě)上表示這個(gè)集合元素的一般符號及取值(或變化)范圍,再畫(huà)一條豎線(xiàn),在豎線(xiàn)后寫(xiě)出這個(gè)集合中元素所具有的共同特征。

  如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;

  例2.(課本例2)

  說(shuō)明:(課本P5最后一段)

  思考3:(課本P6思考) 強調:描述法表示集合應注意集合的代表元素

  {(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數},即代表整數集Z。

  辨析:這里的{ }已包含“所有”的意思,所以不必寫(xiě){全體整數}。下列寫(xiě)法{實(shí)數集},{R}也是錯誤的。

  說(shuō)明:列舉法與描述法各有優(yōu)點(diǎn),應該根據具體問(wèn)題確定采用哪種表示法,要注意,一般集合中元素較多或有無(wú)限個(gè)元素時(shí),不宜采用列舉法。

  (三)課堂練習(課本P6練習)

  三、 歸納小結與作業(yè)

  本節課從實(shí)例入手,非常自然貼切地引出集合與集合的概念,并且結合實(shí)例對集合的概念作了說(shuō)明,然后介紹了集合的常用表示方法,包括列舉法、描述法。

  書(shū)面作業(yè):習題1.1,第1- 4題

高中數學(xué)說(shuō)課稿14

  一、說(shuō)設計理念

  《數學(xué)課程標準》指出要讓學(xué)生感受生活中處處有數學(xué),用數學(xué)知識解決生活中的實(shí)際問(wèn)題。

  基于這一理念,我在教學(xué)過(guò)程中力求聯(lián)系學(xué)生生活實(shí)際和已有的知識經(jīng)驗,從學(xué)生感興趣的素材,設計新穎的導入與例題教學(xué),給數學(xué)課富予新的生命力。課堂中力求構建一種自主探究、和諧合作的教學(xué)氛圍,讓學(xué)生經(jīng)歷知識的探究過(guò)程,培養學(xué)生感受生活中的數學(xué)和用數學(xué)知識解決生活問(wèn)題的能力,體驗數學(xué)的應用價(jià)值。

  二、教材分析:

 。ㄒ唬┙滩牡牡匚缓妥饔

  有關(guān)統計圖的認識,小學(xué)階段主要認識條形統計圖、折線(xiàn)統計圖和扇形統計圖?紤]到扇形統計圖在日常生活中的廣泛應用,《標準》把它作為必學(xué)內容安排在本單元。本單元是在前面學(xué)習了條形統計圖和折線(xiàn)統計圖的特點(diǎn)和作用的基礎上進(jìn)行教學(xué)的。主要通過(guò)熟悉的事例使學(xué)生體會(huì )到扇形統計圖的實(shí)用價(jià)值。

 。ǘ┙虒W(xué)目標

  1、聯(lián)系生活情境了解扇形統計圖的特點(diǎn)和作用

  2、能讀懂扇形統計圖,從中獲取有效的信息。

  3、讓學(xué)生在觀(guān)察、比較、討論和交流中體會(huì )扇形統計圖反映的是整體和部分的關(guān)系。

 。ㄈ┙虒W(xué)重點(diǎn):

  1、能讀懂扇形統計圖,理解扇形統計圖的特點(diǎn)和作用,并能從中獲取有效信息。

  2、認識折線(xiàn)統計圖,了解折線(xiàn)統計圖的特點(diǎn)。

 。ㄋ模┙虒W(xué)難點(diǎn):

  1、能從扇形統計圖中獲得有用信息,并做出合理推斷。

  2、能根據統計圖和數據進(jìn)行數據變化趨勢的分析。

  二、學(xué)情分析

  本單元的教學(xué)是在學(xué)生已有統計經(jīng)驗的基礎上,學(xué)習新知的。六年級的學(xué)生已經(jīng)學(xué)習了條形統計圖和折線(xiàn)統計圖,知道他們的特點(diǎn),并具有一定的概括、分析能力,在此基礎上,通過(guò)新舊知識對比,自然生成新知識點(diǎn)。

  三、設計理念和教法分析

  1、本堂課力爭做到由“關(guān)注知識”轉向“關(guān)注學(xué)生”,由“傳授知識”轉向“引導探索”,“教師是組織者、領(lǐng)導者!睂⒄n堂設置問(wèn)題給學(xué)生,讓學(xué)生自己獲取信息、分析信息,自主探索、合作交流,參與知識的構建。

  2、運用探究法。探究學(xué)習的內容以問(wèn)題的形式出現在教師的引導下,學(xué)生自主探究,讓學(xué)生在課堂上多活動(dòng)、多思考,自主構建知識體系。引導學(xué)生獲取信息并合作交流。

  四、說(shuō)學(xué)法

  《數學(xué)課程標準》指出有效的數學(xué)學(xué)習不能單純的依賴(lài)模仿和記憶,動(dòng)手操作、自主探索與合作交流是學(xué)生學(xué)習數學(xué)的重要方式。教學(xué)時(shí),我通過(guò)學(xué)生感興趣的話(huà)題引入,引導學(xué)生關(guān)注身邊的數學(xué),使學(xué)生體會(huì )到觀(guān)察、概括、想象、遷移等數學(xué)學(xué)習方法,在師生互動(dòng)中讓每個(gè)學(xué)生都動(dòng)口,動(dòng)手,動(dòng)腦。培養學(xué)生學(xué)習的主動(dòng)性和積極性。

  五、說(shuō)教學(xué)程序

  本課分成創(chuàng )設情境,感知特點(diǎn)——分析數據,理解特征——嘗試制圖,看圖分析——實(shí)踐應用,全課總結四環(huán)節。

  六、說(shuō)教學(xué)過(guò)程

 。ㄒ唬⿵土曇

  1、復習舊知

  提問(wèn):我們學(xué)習過(guò)哪些統計方法?其中條形統計圖和折線(xiàn)統計圖各有什么特點(diǎn)?

  2、引入新課

 。ǘ┳灾魈剿,學(xué)習新知

  新知識教學(xué)分二步教學(xué):第一步整體感知,看懂統計圖,理解特征,這是本節課的重點(diǎn)。在教學(xué)中,以知識遷移的方式建立新舊知識之間的聯(lián)系,放手讓學(xué)生獨立思考,互相合作,進(jìn)一步了解統計圖的特征。

  第二步實(shí)踐應用環(huán)節。在教學(xué)中,精心地選取了大量的生活素材,使統計知識與生活建立緊密的聯(lián)系。根據統計圖回答問(wèn)題,是讓學(xué)生運用到剛才學(xué)習到的知識來(lái)解決生活中的一些問(wèn)題,并鞏固剛才所學(xué)的知識,為學(xué)生自己發(fā)現問(wèn)題、提出問(wèn)題及自己解決問(wèn)題提供了較大的空間。同時(shí),讓學(xué)生感悟由于數據變化帶來(lái)的啟示,并能合理地進(jìn)行推理與判斷

  三、課堂總結

  四、布置作業(yè)。

  五、板書(shū)設計:

高中數學(xué)說(shuō)課稿15

  【一】教學(xué)背景分析

  1.教材結構分析

  《圓的方程》安排在高中數學(xué)第二冊(上)第七章第六節.圓作為常見(jiàn)的簡(jiǎn)單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著(zhù)廣泛的應用.圓的方程屬于解析幾何學(xué)的基礎知識,是研究二次曲線(xiàn)的開(kāi)始,對后續直線(xiàn)與圓的位置關(guān)系、圓錐曲線(xiàn)等內容的學(xué)習,無(wú)論在知識上還是方法上都有著(zhù)積極的意義,所以本節內容在整個(gè)解析幾何中起著(zhù)承前啟后的作用.

  2.學(xué)情分析

  圓的方程是學(xué)生在初中學(xué)習了圓的概念和基本性質(zhì)后,又掌握了求曲線(xiàn)方程的一般方法的基礎上進(jìn)行研究的.但由于學(xué)生學(xué)習解析幾何的時(shí)間還不長(cháng)、學(xué)習程度較淺,且對坐標法的運用還不夠熟練,在學(xué)習過(guò)程中難免會(huì )出現困難.另外學(xué)生在探究問(wèn)題的能力,合作交流的意識等方面有待加強.

  根據上述教材結構與內容分析,考慮到學(xué)生已有的認知結構和心理特征,我制定如下教學(xué)目標:

  3.教學(xué)目標

  (1) 知識目標:①掌握圓的標準方程;

 、跁(huì )由圓的標準方程寫(xiě)出圓的半徑和圓心坐標,能根據條件寫(xiě)出圓的標準方程;

 、劾脠A的標準方程解決簡(jiǎn)單的實(shí)際問(wèn)題.

  (2) 能力目標:①進(jìn)一步培養學(xué)生用代數方法研究幾何問(wèn)題的能力;

 、诩由顚敌谓Y合思想的理解和加強對待定系數法的運用;

 、墼鰪妼W(xué)生用數學(xué)的意識.

  (3) 情感目標:①培養學(xué)生主動(dòng)探究知識、合作交流的意識;

 、谠隗w驗數學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習興趣.

  根據以上對教材、教學(xué)目標及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):

  4. 教學(xué)重點(diǎn)與難點(diǎn)

  (1)重點(diǎn):圓的標準方程的求法及其應用.

  (2)難點(diǎn): ①會(huì )根據不同的已知條件求圓的標準方程;

 、谶x擇恰當的坐標系解決與圓有關(guān)的實(shí)際問(wèn)題.

  為使學(xué)生能達到本節設定的教學(xué)目標,我再從教法和學(xué)法上進(jìn)行分析:

  好學(xué)教育:

  【二】教法學(xué)法分析

  1.教法分析 為了充分調動(dòng)學(xué)生學(xué)習的積極性,本節課采用“啟發(fā)式”問(wèn)題教學(xué)法,用環(huán)環(huán)相扣的問(wèn)題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區上.另外我恰當的利用多媒體課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng )設實(shí)際問(wèn)題的情境既能激發(fā)學(xué)生的學(xué)習興趣,又直觀(guān)的引導了學(xué)生建模的過(guò)程.

  2.學(xué)法分析 通過(guò)推導圓的標準方程,加深對用坐標法求軌跡方程的理解.通過(guò)求圓的標準方程,理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓.通過(guò)應用圓的標準方程,熟悉用待定系數法求的過(guò)程. 下面我就對具體的教學(xué)過(guò)程和設計加以說(shuō)明:

  【三】教學(xué)過(guò)程與設計

  整個(gè)教學(xué)過(guò)程是由七個(gè)問(wèn)題組成的問(wèn)題鏈驅動(dòng)的,共分為五個(gè)環(huán)節:

  創(chuàng )設情境 啟迪思維 深入探究 獲得新知 應用舉例 鞏固提高

  反饋訓練 形成方法 小結反思 拓展引申

  下面我從縱橫兩方面敘述我的教學(xué)程序與設計意圖.

  首先:縱向敘述教學(xué)過(guò)程

  (一)創(chuàng )設情境——啟迪思維

  問(wèn)題一 已知隧道的截面是半徑為4m的半圓,車(chē)輛只能在道路中心線(xiàn)一側行駛,一輛寬為2.7m,高為3m的貨車(chē)能不能駛入這個(gè)隧道?

  通過(guò)對這個(gè)實(shí)際問(wèn)題的探究,把學(xué)生的思維由用勾股定理求線(xiàn)段CD的長(cháng)度轉移為用曲線(xiàn)的方程來(lái)解決.一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車(chē)不能通過(guò)的結論的同時(shí)學(xué)生自己推導出了圓心在原點(diǎn),半徑為4的圓的標準方程,從而很自然的進(jìn)入了本課的主題.用實(shí)際問(wèn)題創(chuàng )設問(wèn)題情境,讓學(xué)生感受到問(wèn)題來(lái)源于實(shí)際,應用于實(shí)際,激發(fā)了學(xué)生的學(xué)習興趣和學(xué)習欲望.這樣獲取的知識,不但易于保持,而且易于遷移.

  通過(guò)對問(wèn)題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標法研究圓的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節.

  (二)深入探究——獲得新知

  問(wèn)題二 1.根據問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?

  2.如果圓心在,半徑為時(shí)又如何呢?

  好學(xué)教育:

  這一環(huán)節我首先讓學(xué)生對問(wèn)題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標準方程后,引導學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標準方程.然后再讓學(xué)生對圓心不在原點(diǎn)的情況進(jìn)行探究.我預設了三種方法等待著(zhù)學(xué)生的探究結果,分別是:坐標法、圖形變換法、向量平移法.

  得到圓的標準方程后,我設計了由淺入深的三個(gè)應用平臺,進(jìn)入第三環(huán)節.

  (三)應用舉例——鞏固提高

  I.直接應用 內化新知

  問(wèn)題三 1.寫(xiě)出下列各圓的標準方程:

  (1)圓心在原點(diǎn),半徑為3;

  (2)經(jīng)過(guò)點(diǎn),圓心在點(diǎn).

  2.寫(xiě)出圓的圓心坐標和半徑.

  我設計了兩個(gè)小問(wèn)題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡(jiǎn)單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標、半徑與圓的標準方程之間的關(guān)系,為后面探究圓的切線(xiàn)問(wèn)題作準備.

  II.靈活應用 提升能力

  問(wèn)題四 1.求以點(diǎn)為圓心,并且和直線(xiàn)相切的圓的方程.

  2.求過(guò)點(diǎn),圓心在直線(xiàn)上且與軸相切的圓的方程.

  3.已知圓的方程為,求過(guò)圓上一點(diǎn)的切線(xiàn)方程.

  你能歸納出具有一般性的結論嗎?

  已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是什么?

  我設計了三個(gè)小問(wèn)題,第一個(gè)小題有了剛剛解決問(wèn)題三的基礎,學(xué)生會(huì )很快求出半徑,根據圓心坐標寫(xiě)出圓的標準方程.第二個(gè)小題有些困難,需要引導學(xué)生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓.第三個(gè)小題解決方法較多,我預設了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng )設了空間.最后我讓學(xué)生由第三小題的結論進(jìn)行歸納、猜想,在論證經(jīng)過(guò)圓上一點(diǎn)圓的切線(xiàn)方程的過(guò)程中,又一次模擬了真理發(fā)現的過(guò)程,使探究氣氛達到高潮.

  III.實(shí)際應用 回歸自然

  問(wèn)題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長(cháng)度(精確到0.01m).

  好學(xué)教育:

  我選用了教材的例3,它是待定系數法求出圓的三個(gè)參數的又一次應用,同時(shí)也與引例相呼應,使學(xué)生形成解決實(shí)際問(wèn)題的一般方法,培養了學(xué)生建模的習慣和用數學(xué)的意識.

  (四)反饋訓練——形成方法

  問(wèn)題六 1.求過(guò)原點(diǎn)和點(diǎn),且圓心在直線(xiàn)上的圓的標準方程.

  2.求圓過(guò)點(diǎn)的切線(xiàn)方程.

  3.求圓過(guò)點(diǎn)的切線(xiàn)方程.

  接下來(lái)是第四環(huán)節——反饋訓練.這一環(huán)節中,我設計三個(gè)小題作為鞏固性訓練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習數學(xué)的樂(lè )趣,成功的喜悅,找到自信,增強學(xué)習數學(xué)的愿望與信心.另外第3題是我特意安排的一道求過(guò)圓外一點(diǎn)的圓的切線(xiàn)方程,由于學(xué)生剛剛歸納了過(guò)圓上一點(diǎn)圓的切線(xiàn)方程,因此很容易產(chǎn)生思維的負遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導學(xué)生用數形結合的思想,結合初中已有的圓的知識進(jìn)行判斷,這樣的設計對培養學(xué)生思維的嚴謹性具有良好的效果.

  (五)小結反思——拓展引申

  1.課堂小結

  把圓的標準方程與過(guò)圓上一點(diǎn)圓的切線(xiàn)方程加以小結,提煉數形結合的思想和待定系數的方法 ①圓心為,半徑為r 的圓的標準方程為:

  圓心在原點(diǎn)時(shí),半徑為r 的圓的標準方程為:.

 、谝阎獔A的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是:.

  2.分層作業(yè)

  (A)鞏固型作業(yè):教材P81-82:(習題7.6)1,2,4.(B)思維拓展型作業(yè):試推導過(guò)圓上一點(diǎn)的切線(xiàn)方程.

  3.激發(fā)新疑

  問(wèn)題七 1.把圓的標準方程展開(kāi)后是什么形式?

  2.方程表示什么圖形?

  在本課的結尾設計這兩個(gè)問(wèn)題,作為對這節課內容的鞏固與延伸,讓學(xué)生體會(huì )知識的起點(diǎn)與終點(diǎn)都蘊涵著(zhù)問(wèn)題,舊的問(wèn)題解決了,新的問(wèn)題又產(chǎn)生了.在知識的拓展中再次掀起學(xué)生探究的熱情.另外它為下節課研究圓的一般方程作了重要的準備.

  以上是我縱向的教學(xué)過(guò)程及簡(jiǎn)單的設計意圖,接下來(lái),我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設計: 橫向闡述教學(xué)設計

  (一)突出重點(diǎn) 抓住關(guān)鍵 突破難點(diǎn)

  好學(xué)教育:

  求圓的標準方程既是本節課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設了由淺入深的學(xué)習環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標準方程之間的關(guān)系,逐步理解三個(gè)參數的重要性,自然形成待定系數法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn).

  第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應用問(wèn)題,這是學(xué)生固有的難題,主要是因為應用問(wèn)題的題目冗長(cháng),學(xué)生很難根據問(wèn)題情境構建數學(xué)模型,缺乏解決實(shí)際問(wèn)題的信心,為此我首先用一道題目簡(jiǎn)潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導學(xué)生真正走入問(wèn)題的情境之中,并從中抽象出數學(xué)模型,從而消除畏難情緒,增強了信心.最后再形成應用圓的標準方程解決實(shí)際問(wèn)題的一般模式,并嘗試應用該模式分析和解決第二個(gè)應用問(wèn)題——問(wèn)題五.這樣的設計,使學(xué)生在解決問(wèn)題的同時(shí),形成了方法,難點(diǎn)自然突破.

  (二)學(xué)生主體 教師主導 探究主線(xiàn)

  本節課的設計用問(wèn)題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終.從圓的標準方程的推導到應用都是在問(wèn)題的指引、我的指導下,由學(xué)生探究完成的.另外,我重點(diǎn)設計了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題四的第三問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生設立充分的探究空間,學(xué)生在交流成果的過(guò)程中,既體驗了科學(xué)研究和真理發(fā)現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問(wèn)題的驅動(dòng)下,高效的完成本節的學(xué)習任務(wù).

  (三)培養思維 提升能力 激勵創(chuàng )新

  為了培養學(xué)生的理性思維,我分別在問(wèn)題一和問(wèn)題四中,設計了兩次由特殊到一般的學(xué)習思路,培養學(xué)生的歸納概括能力.在問(wèn)題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養了學(xué)生的創(chuàng )新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行.

  以上是我對這節課的教學(xué)預設,具體的教學(xué)過(guò)程還要根據學(xué)生在課堂中的具體情況適當調整,向生成性課堂進(jìn)行轉變.最后我以赫爾巴特的一句名言結束我的說(shuō)課,發(fā)揮我們的創(chuàng )造性,力爭“使教育過(guò)程成為一種藝術(shù)的事業(yè)”.

【高中數學(xué)說(shuō)課稿】相關(guān)文章:

高中數學(xué)經(jīng)典說(shuō)課稿07-11

高中數學(xué)的說(shuō)課稿07-11

高中數學(xué)免費說(shuō)課稿09-30

高中數學(xué)說(shuō)課稿08-26

高中數學(xué)向量說(shuō)課稿07-11

高中數學(xué)數列說(shuō)課稿07-11

高中數學(xué)集合的說(shuō)課稿07-12

高中數學(xué)章節說(shuō)課稿06-13

高中數學(xué)統計說(shuō)課稿07-11

高中數學(xué)獲獎?wù)f(shuō)課稿07-11