97骚碰,毛片大片免费看,亚洲第一天堂,99re思思,色好看在线视频播放,久久成人免费大片,国产又爽又色在线观看

高中數學(xué)《平面向量數量積》說(shuō)課稿

時(shí)間:2024-01-05 18:29:10 數學(xué)說(shuō)課稿 我要投稿
  • 相關(guān)推薦

高中數學(xué)《平面向量數量積》說(shuō)課稿

  作為一名默默奉獻的教育工作者,往往需要進(jìn)行說(shuō)課稿編寫(xiě)工作,是說(shuō)課取得成功的前提。我們應該怎么寫(xiě)說(shuō)課稿呢?下面是小編整理的高中數學(xué)《平面向量數量積》說(shuō)課稿,希望能夠幫助到大家。

高中數學(xué)《平面向量數量積》說(shuō)課稿

高中數學(xué)《平面向量數量積》說(shuō)課稿1

  一、說(shuō)教材

  平面向量的數量積是兩向量之間的乘法,而平面向量的坐標表示把向量之間的運算轉化為數之間的運算。本節內容是在平面向量的坐標表示以及平面向量的數量積及其運算律的基礎上,介紹了平面向量數量積的坐標表示,平面兩點(diǎn)間的距離公式,和向量垂直的坐標表示的充要條件。為解決直線(xiàn)垂直問(wèn)題,三角形邊角的有關(guān)問(wèn)題提供了很好的辦法。本節內容也是全章重要內容之一。

  二、說(shuō)學(xué)習目標和要求

  通過(guò)本節的學(xué)習,要讓學(xué)生掌握

 。1)平面向量數量積的坐標表示。

 。2)平面兩點(diǎn)間的距離公式。

 。3)向量垂直的坐標表示的充要條件。

  以及它們的一些簡(jiǎn)單應用,以上三點(diǎn)也是本節課的重點(diǎn),本節課的難點(diǎn)是向量垂直的坐標表示的充要條件以及它的靈活應用。

  三、說(shuō)教法

  在教學(xué)過(guò)程中,我主要采用了以下幾種教學(xué)方法:

 。1)啟發(fā)式教學(xué)法

  因為本節課重點(diǎn)的坐標表示公式的推導相對比較容易,所以這節課我準備讓學(xué)生自行推導出兩個(gè)向量數量積的坐標表示公式,然后引導學(xué)生發(fā)現幾個(gè)重要的結論、如模的計算公式,平面兩點(diǎn)間的`距離公式,向量垂直的坐標表示的充要條件。

 。2)講解式教學(xué)法

  主要是講清概念,解除學(xué)生在概念理解上的疑惑感;例題講解時(shí),演示解題過(guò)程!

  主要輔助教學(xué)的手段(powerpoint)

 。3)討論式教學(xué)法

  主要是通過(guò)學(xué)生之間的相互交流來(lái)加深對較難問(wèn)題的理解,提高學(xué)生的自學(xué)能力和發(fā)現、分析、解決問(wèn)題以及創(chuàng )新能力。

  四、說(shuō)學(xué)法

  學(xué)生是課堂的主體,一切教學(xué)活動(dòng)都要圍繞學(xué)生展開(kāi),借以誘發(fā)學(xué)生的學(xué)習興趣,增強課堂上和學(xué)生的交流,從而達到及時(shí)發(fā)現問(wèn)題,解決問(wèn)題的目的。通過(guò)精講多練,充分調動(dòng)學(xué)生自主學(xué)習的積極性。如讓學(xué)生自己動(dòng)手推導兩個(gè)向量數量積的坐標公式,引導學(xué)生推導4個(gè)重要的結論!并在具體的問(wèn)題中,讓學(xué)生建立方程的思想,更好的解決問(wèn)題!

  五、說(shuō)教學(xué)過(guò)程

  這節課我準備這樣進(jìn)行:

  首先提出問(wèn)題、要算出兩個(gè)非零向量的數量積,我們需要知道哪些量?

  繼續提出問(wèn)題、假如知道兩個(gè)非零向量的坐標,是不是可以用這兩個(gè)向量的坐標來(lái)表示這兩個(gè)向量的數量積呢?

  引導學(xué)生自己推導平面向量數量積的坐標表示公式,在此公式基礎上還可以引導學(xué)生得到以下幾個(gè)重要結論:

 。1)模的計算公式

 。2)平面兩點(diǎn)間的距離公式。

 。3)兩向量夾角的余弦的坐標表示

 。4)兩個(gè)向量垂直的標表示的充要條件

  第二部分是例題講解,通過(guò)例題講解,使學(xué)生更加熟悉公式并會(huì )加以應用。

  例題1是書(shū)上122頁(yè)例1,此題是直接用平面向量數量積的坐標公式的題,目的是讓學(xué)生熟悉這個(gè)公式,并在此題基礎上,求這兩個(gè)向量的夾角?目的是讓學(xué)生熟悉兩向量夾角的余弦的坐標表示公式例題2是直接證明直線(xiàn)垂直的題,雖然比較簡(jiǎn)單,但體現了一種重要的證明方法,這種方法要讓學(xué)生掌握,其實(shí)這一例題也是兩個(gè)向量垂直坐標表示的充要條件的一個(gè)應用、即兩個(gè)向量的數量積是否為零是判斷相應的兩條直線(xiàn)是否垂直的重要方法之一。

  例題3是在例2的基礎上稍微作了一下改變,目的是讓學(xué)生會(huì )應用公式來(lái)解決問(wèn)題,并讓學(xué)生在這要有建立方程的思想。

  再配以練習,讓學(xué)生能熟練的應用公式,掌握今天所學(xué)內容。

高中數學(xué)《平面向量數量積》說(shuō)課稿2

  說(shuō)課內容:普通高中課程標準實(shí)驗教科書(shū)(人教A版)《數學(xué)必修4》第二章第四節“平面向量的數量積”的第一課時(shí)---平面向量數量積的物理背景及其含義。

  下面,我從背景分析、教學(xué)目標設計、課堂結構設計、教學(xué)過(guò)程設計、教學(xué)媒體設計及教學(xué)評價(jià)設計六個(gè)方面對本節課的思考進(jìn)行說(shuō)明。

  一、 背景分析

  1、學(xué)習任務(wù)分析

  平面向量的數量積是繼向量的線(xiàn)性運算之后的又一重要運算,也是高中數學(xué)的一個(gè)重要概念,在數學(xué)、物理等學(xué)科中應用十分廣泛。本節內容教材共安排兩課時(shí),其中第一課時(shí)主要研究數量積的概念,第二課時(shí)主要研究數量積的坐標運算,本節課是第一課時(shí)。

  本節課的主要學(xué)習任務(wù)是通過(guò)物理中“功”的事例抽象出平面向量數量積的概念,在此基礎上探究數量積的性質(zhì)與運算律,使學(xué)生體會(huì )類(lèi)比的思想方法,進(jìn)一步培養學(xué)生的抽象概括和推理論證的能力。其中數量積的概念既是對物理背景的抽象,又是研究性質(zhì)和運算律的基礎。同時(shí)也因為在這個(gè)概念中,既有長(cháng)度又有角度,既有形又有數,是代數、幾何與三角的最佳結合點(diǎn),不僅應用廣泛,而且很好的體現了數形結合的數學(xué)思想,使得數量積的概念成為本節課的核心概念,自然也是本節課教學(xué)的重點(diǎn)。

  2、學(xué)生情況分析

  學(xué)生在學(xué)習本節內容之前,已熟知了實(shí)數的運算體系,掌握了向量的概念及其線(xiàn)性運算,具備了功等物理知識,并且初步體會(huì )了研究向量運算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再從概念出發(fā),在與實(shí)數運算類(lèi)比的基礎上研究性質(zhì)和運算律。這為學(xué)生學(xué)習數量積做了很好的鋪墊,使學(xué)生倍感親切。但也正是這些干擾了學(xué)生對數量積概念的理解,一方面,相對于線(xiàn)性運算而言,數量積的結果發(fā)生了本質(zhì)的變化,兩個(gè)有形有數的向量經(jīng)過(guò)數量積運算后,形卻消失了,學(xué)生對這一點(diǎn)是很難接受的;另一方面,由于受實(shí)數乘法運算的影響,也會(huì )造成學(xué)生對數量積理解上的偏差,特別是對性質(zhì)和運算律的理解。因而本節課教學(xué)的難點(diǎn)數量積的概念。

  二、 教學(xué)目標設計

  《普通高中數學(xué)課程標準(實(shí)驗)》 對本節課的要求有以下三條:

  (1)通過(guò)物理中“功”等事例,理解平面向量數量積的含義及其物理意義。

  (2)體會(huì )平面向量的數量積與向量投影的關(guān)系。

  (3)能用運數量積表示兩個(gè)向量的夾角,會(huì )用數量積判斷兩個(gè)平面向量的垂直關(guān)系。

  從以上的背景分析可以看出,數量積的概念既是本節課的重點(diǎn),也是難點(diǎn)。為了突破這一難點(diǎn),首先無(wú)論是在概念的引入還是應用過(guò)程中,物理中“功”的實(shí)例都發(fā)揮了重要作用。其次,作為數量積概念延伸的性質(zhì)和運算律,不僅能夠使學(xué)生更加全面深刻地理解概念,同時(shí)也是進(jìn)行相關(guān)計算和判斷的理論依據。最后,無(wú)論是數量積的性質(zhì)還是運算律,都希望學(xué)生在類(lèi)比的基礎上,通過(guò)主動(dòng)探究來(lái)發(fā)現,因而對培養學(xué)生的抽象概括能力、推理論證能力和類(lèi)比思想都無(wú)疑是很好的載體。

  綜上所述,結合“課標”要求和學(xué)生實(shí)際,我將本節課的教學(xué)目標定為:

  1、了解平面向量數量積的物理背景,理解數量積的含義及其物理意義;

  2、體會(huì )平面向量的數量積與向量投影的關(guān)系,掌握數量積的性質(zhì)和運算律,

  并能運用性質(zhì)和運算律進(jìn)行相關(guān)的運算和判斷;

  3、體會(huì )類(lèi)比的數學(xué)思想和方法,進(jìn)一步培養學(xué)生抽象概括、推理論證的能力。

  三、課堂結構設計

  本節課從總體上講是一節概念教學(xué),依據數學(xué)課程改革應關(guān)注知識的發(fā)生和發(fā)展過(guò)程的理念,結合本節課的知識的邏輯關(guān)系,我按照以下順序安排本節課的教學(xué):

  即先從數學(xué)和物理兩個(gè)角度創(chuàng )設問(wèn)題情景,通過(guò)歸納和抽象得到數量積的概念,在此基礎上研究數量積的性質(zhì)和運算律,使學(xué)生進(jìn)一步加深對概念的理解,然后通過(guò)例題和練習使學(xué)生鞏固概念,加深印象,最后通過(guò)課堂小結提高學(xué)生認識,形成知識體系。

  四、 教學(xué)媒體設計

  和“大綱”教材相比,“課標”教材在本節課的內容安排上,雖然將向量的夾角在“平面向量基本定理”一節提前做了介紹,但卻將原來(lái)分兩節課完成的內容合并成一節,相比較而言本節課的教學(xué)任務(wù)加重了許多。為了保證教學(xué)任務(wù)的完成,順利實(shí)現本節課的教學(xué)目標,考慮到本節課的實(shí)際特點(diǎn),在教學(xué)媒體的使用上,我的設想主要有以下兩點(diǎn):

  1、制作高效實(shí)用的電腦多媒體課件,主要作用是改變相關(guān)內容的呈現方式,以此來(lái)節約課時(shí),增加課堂容量。

  2、設計科學(xué)合理的板書(shū)(見(jiàn)下),一方面使學(xué)生加深對主要知識的印象,另一方面使學(xué)生清楚本節內容知識間的邏輯關(guān)系,形成知識網(wǎng)絡(luò )。

  平面向量數量積的物理背景及其含義

  一、 數量積的概念 二、數量積的性質(zhì) 四、應用與提高

  1、 概念: 例1:

  2、 概念強調 (1)記法 例2:

  (2)“規定” 三、數量積的運算律 例3:

  3、幾何意義:

  4、物理意義:

  五、 教學(xué)過(guò)程設計

  課標指出:數學(xué)教學(xué)過(guò)程是教師引導學(xué)生進(jìn)行學(xué)習活動(dòng)的過(guò)程,是教師和學(xué)生間互動(dòng)的過(guò)程,是師生共同發(fā)展的過(guò)程。為有序、有效地進(jìn)行教學(xué),本節課我主要安排以下六個(gè)活動(dòng):

  活動(dòng)一:創(chuàng )設問(wèn)題情景,激發(fā)學(xué)習興趣

  正如教材主編寄語(yǔ)所言,數學(xué)是自然的,而不是強加于人的。平面向量的數量積這一重要概念,和向量的線(xiàn)性運算一樣,也有其數學(xué)背景和物理背景,為了體現這一點(diǎn),我設計以下幾個(gè)問(wèn)題:

  問(wèn)題1:我們已經(jīng)研究了向量的哪些運算?這些運算的結果是什么?

  問(wèn)題2:我們是怎么引入向量的加法運算的?我們又是按照怎樣的順序研究了這種運算的?

  期望學(xué)生回答:物理模型→概念→性質(zhì)→運算律→應用

  問(wèn)題3:如圖所示,一物體在力F的作用下產(chǎn)生位移S,

  (1)力F所做的功W= 。

  (2)請同學(xué)們分析這個(gè)公式的.特點(diǎn):

  W(功)是 量,

  F(力)是 量,

  S(位移)是 量,

  α是 。

  問(wèn)題1的設計意圖在于使學(xué)生了解數量積的數學(xué)背景,讓學(xué)生明白本節課所要研究的數量積與向量的加法、減法及數乘一樣,都是向量的運算,但與向量的線(xiàn)性運算相比,數量積運算又有其特殊性,那就是其結果發(fā)生了本質(zhì)的變化。

  問(wèn)題2的設計意圖在于使學(xué)生在與向量加法類(lèi)比的基礎上明了本節課的研究方法和順序,為教學(xué)活動(dòng)指明方向。

  問(wèn)題3的設計意圖在于使學(xué)生了解數量積的物理背景,讓學(xué)生知道,我們研究數量積絕不僅僅是為了數學(xué)自身的完善,而是有其客觀(guān)背景和現實(shí)意義的,從而產(chǎn)生了進(jìn)一步研究這種新運算的愿望。同時(shí),也為抽象數量積的概念做好鋪墊。

  活動(dòng)二:探究數量積的概念

  1、概念的抽象

  在分析“功”的計算公式的基礎上提出問(wèn)題4

  問(wèn)題4:你能用文字語(yǔ)言來(lái)表述功的計算公式嗎?如果我們將公式中的力與位移推廣到一般向量,其結果又該如何表述?

  學(xué)生通過(guò)思考不難回答:功是力與位移的大小及其夾角余弦的乘積;兩個(gè)向量的大小及其夾角余弦的乘積。這樣,學(xué)生事實(shí)上已經(jīng)得到數量積概念的文字表述了,在此基礎上,我進(jìn)一步明晰數量積的概念。

  2、概念的明晰

  已知兩個(gè)非零向量

  與

  ,它們的夾角為

  ,我們把數量 ︱

  ︱·︱

  ︱cos

  叫做

  與

  的數量積(或內積),記作:

  ·

  ,即:

  ·

  = ︱

  ︱·︱

  ︱cos

  在強調記法和“規定”后 ,為了讓學(xué)生進(jìn)一步認識這一概念,提出問(wèn)題5

  問(wèn)題5:向量的數量積運算與線(xiàn)性運算的結果有什么不同?影響數量積大小的因素有哪些?并完成下表:

  角

  的范圍0°≤

  <90°

  =90°0°<

  ≤180°

  ·

  的符號

  通過(guò)此環(huán)節不僅使學(xué)生認識到數量積的結果與線(xiàn)性運算的結果有著(zhù)本質(zhì)的不同,而且認識到向量的夾角是決定數量積結果的重要因素,為下面更好地理解數量積的性質(zhì)和運算律做好鋪墊。

  3、探究數量積的幾何意義

  這個(gè)問(wèn)題教材是這樣安排的:在給出向量數量積的概念后,只介紹了向量投影的定義,直到講完例1后,為了證明運算律的第三條才直接以結論的形式呈現給學(xué)生,我覺(jué)得這樣安排似乎不太自然,還不如在給出向量投影的概念后,直接由學(xué)生自己歸納得出,所以做了調整。為此,我首先給出給出向量投影的概念,然后提出問(wèn)題5。

  如圖,我們把│

  │cos

  (│

  │cos

  )叫做向量

  在

  方向上(

  在

  方向上)的投影,記做:OB1=│

  │cos

  問(wèn)題6:數量積的幾何意義是什么?

  這樣做不僅讓學(xué)生從“形”的角度重新認識數量積的概念,從中體會(huì )數量積與向量投影的關(guān)系,同時(shí)也更符合知識的連貫性,而且也節約了課時(shí)。

  4、研究數量積的物理意義

  數量積的概念是由物理中功的概念引出的,學(xué)習了數量積的概念后,學(xué)生就會(huì )明白功的數學(xué)本質(zhì)就是力與位移的數量積。為此,我設計以下問(wèn)題 一方面使學(xué)生嘗試計算數量積,另一方面使學(xué)生理解數量積的物理意義,同時(shí)也為數量積的性質(zhì)埋下伏筆。

  問(wèn)題7:

  (1) 請同學(xué)們用一句話(huà)來(lái)概括功的數學(xué)本質(zhì):功是力與位移的數量積 。

  (2)嘗試練習:一物體質(zhì)量是10千克,分別做以下運動(dòng):

 、、在水平面上位移為10米;

 、、豎直下降10米;

 、、豎直向上提升10米;

 、、沿傾角為30度的斜面向上運動(dòng)10米;

  分別求重力做的功。

  活動(dòng)三:探究數量積的運算性質(zhì)

  1、性質(zhì)的發(fā)現

  教材中關(guān)于數量積的三條性質(zhì)是以探究的形式出現的,為了很好地完成這一探究活動(dòng),在完成上述練習后,我不失時(shí)機地提出問(wèn)題8:

  (1)將嘗試練習中的① ② ③的結論推廣到一般向量,你能得到哪些結論?

  (2)比較︱

  ·

  ︱與︱

  ︱×︱

  ︱的大小,你有什么結論?

  在學(xué)生討論交流的基礎上,教師進(jìn)一步明晰數量積的性質(zhì),然后再由學(xué)生利用數量積的定義給予證明,完成探究活動(dòng)。

  2、明晰數量積的性質(zhì)

  3、性質(zhì)的證明

  這樣設計體現了教師只是教學(xué)活動(dòng)的引領(lǐng)者,而學(xué)生才是學(xué)習活動(dòng)的主體,讓學(xué)生成為學(xué)習的研究者,不斷地體驗到成功的喜悅,激發(fā)學(xué)生參與學(xué)習活動(dòng)的熱情,不僅使學(xué)生獲得了知識,更培養了學(xué)生由特殊到一般的思維品質(zhì)。

  活動(dòng)四:探究數量積的運算律

  1、運算律的發(fā)現

  關(guān)于運算律,教材仍然是以探究的形式出現,為此,首先提出問(wèn)題9

  問(wèn)題9:我們學(xué)過(guò)了實(shí)數乘法的哪些運算律?這些運算律對向量是否也適用?

  通過(guò)此問(wèn)題主要是想使學(xué)生在類(lèi)比的基礎上,猜測提出數量積的運算律。

  學(xué)生可能會(huì )提出以下猜測: ①

  ·

  =

  ·

 、(

  ·

  )

  =

  (

  ·

  ) ③(

  +

  )·

  =

  ·

  +

  ·

  猜測①的正確性是顯而易見(jiàn)的。

  關(guān)于猜測②的正確性,我提示學(xué)生思考下面的問(wèn)題:

  猜測②的左右兩邊的結果各是什么?它們一定相等嗎?

  學(xué)生通過(guò)討論不難發(fā)現,猜測②是不正確的。

  這時(shí)教師在肯定猜測③的基礎上明晰數量積的運算律:

  2、明晰數量積的運算律

  3、證明運算律

  學(xué)生獨立證明運算律(2)

  我把運算運算律(2)的證明交給學(xué)生完成,在證明時(shí),學(xué)生可能只考慮到λ>0的情況,為了幫助學(xué)生完善證明,提出以下問(wèn)題:

  當λ<0時(shí),向量

  與λ

  ,

  與λ

  的方向 的關(guān)系如何?此時(shí),向量λ

  與

  及

  與λ

  的夾角與向量

  與

  的夾角相等嗎?

  師生共同證明運算律(3)

  運算律(3)的證明對學(xué)生來(lái)說(shuō)是比較困難的,為了節約課時(shí),這個(gè)證明由師生共同完成,我想這也是教材的本意。

  在這個(gè)環(huán)節中,我仍然是首先為學(xué)生創(chuàng )設情景,讓學(xué)生在類(lèi)比的基礎上進(jìn)行猜想歸納,然后教師明晰結論,最后再完成證明,這樣做不僅培養了學(xué)生推理論證的能力,同時(shí)也增強了學(xué)生類(lèi)比創(chuàng )新的意識,將知識的獲得和能力的培養有機的結合在一起。

  活動(dòng)五:應用與提高

  例1、(師生共同完成)已知︱

  ︱=6,︱

  ︱=4,

  與

  的夾角為60°,求

  (

  +2

  )·(

  -3

  ),并思考此運算過(guò)程類(lèi)似于哪種運算?

  例2、(學(xué)生獨立完成)對任意向量

  ,b是否有以下結論:

  (1)(

  +

  )2=

  2+2

  ·

  +

  2

  (2)(

  +

  )·(

  -

  )=

  2—

  2

  例3、(師生共同完成)已知︱

  ︱=3,︱

  ︱=4, 且

  與

  不共線(xiàn),k為何值時(shí),向量

  +k

  與

  -k

  互相垂直?并思考:通過(guò)本題你有什么收獲?

  本節教材共安排了四道例題,我根據學(xué)生實(shí)際選擇了其中的三道,并對例1和例3增加了題后反思。例1是數量積的性質(zhì)和運算律的綜合應用,教學(xué)時(shí),我重點(diǎn)從對運算原理的分析和運算過(guò)程的規范書(shū)寫(xiě)兩個(gè)方面加強示范。完成計算后,進(jìn)一步提出問(wèn)題:此運算過(guò)程類(lèi)似于哪種運算?目的是想讓學(xué)生在類(lèi)比多項式乘法的基礎上自己猜測提出例2給出的兩個(gè)公式,再由學(xué)生獨立完成證明,一方面這并不困難,另一方面培養了學(xué)生通過(guò)類(lèi)比這一思維模式達到創(chuàng )新的目的。例3的主要作用是,在繼續鞏固性質(zhì)和運算律的同時(shí),教給學(xué)生如何利用數量積來(lái)判斷兩個(gè)向量的垂直,是平面向量數量積的基本應用之一,教學(xué)時(shí)重點(diǎn)給學(xué)生分析數與形的轉化原理。

  為了使學(xué)生更好的理解數量積的含義,熟練掌握性質(zhì)及運算律,并能夠應用數量積解決有關(guān)問(wèn)題,再安排如下練習:

  1、 下列兩個(gè)命題正確嗎?為什么?

 、、若

  ≠0,則對任一非零向量

  ,有

  ·

  ≠0.

 、、若

  ≠0,

  ·

  =

  ·

  ,則

  =

  .

  2、已知△ABC中,

  =

  ,

  =

  ,當

  ·

  <0或

  ·

  =0時(shí),試判斷△ABC的形狀。

  安排練習1的主要目的是,使學(xué)生在與實(shí)數乘法比較的基礎上全面認識數量積這一重要運算,

  通過(guò)練習2使學(xué)生學(xué)會(huì )用數量積表示兩個(gè)向量的夾角,進(jìn)一步感受數量積的應用價(jià)值。

  活動(dòng)六:小結提升與作業(yè)布置

  1、本節課我們學(xué)習的主要內容是什么?

  2、平面向量數量積的兩個(gè)基本應用是什么?

  3、我們是按照怎樣的思維模式進(jìn)行概念的歸納和性質(zhì)的探究?在運算律的探究過(guò)程中,滲透了哪些數學(xué)思想?

  4、類(lèi)比向量的線(xiàn)性運算,我們還應該怎樣研究數量積?

  通過(guò)上述問(wèn)題,使學(xué)生不僅對本節課的知識、技能及方法有了更加全面深刻的認識,同時(shí)也為下

  一節做好鋪墊,繼續激發(fā)學(xué)生的求知欲。

  布置作業(yè):

  1、課本P121習題2.4A組1、2、3。

  2、拓展與提高:

  已知

  與

  都是非零向量,且

  +3

  與7

  -5

  垂直,

  -4

  與 7

  -2

  垂直求

  與

  的夾角。

  在這個(gè)環(huán)節中,我首先考慮檢測全體學(xué)生是否都達到了“課標”的基本要求,因此安排了一組教材中的習題,目的是讓所有的學(xué)生繼續加深對數量積概念的理解和應用,為后續學(xué)習打好基礎。其次,為了能讓不同的學(xué)生在數學(xué)領(lǐng)域得到不同的發(fā)展,我又安排了一道有一定難度的問(wèn)題供學(xué)有余力的同學(xué)選做。

  六、教學(xué)評價(jià)設計

  評價(jià)方式的轉變是新課程改革的一大亮點(diǎn),課標指出:相對于結果,過(guò)程更能反映每個(gè)學(xué)生的發(fā)展變化,體現出學(xué)生成長(cháng)的歷程。因此,數學(xué)學(xué)習的評價(jià)既要重視結果,也要重視過(guò)程。結合“課標”對數學(xué)學(xué)習的評價(jià)建議,對本節課的教學(xué)我主要通過(guò)以下幾種方式進(jìn)行:

  1、 通過(guò)與學(xué)生的問(wèn)答交流,發(fā)現其思維過(guò)程,在鼓勵的基礎上,糾正偏差,并對其進(jìn)行定

  性的評價(jià)。

  2、在學(xué)生討論、交流、協(xié)作時(shí),教師通過(guò)觀(guān)察,就個(gè)別或整體參與活動(dòng)的態(tài)度和表現做出評價(jià),以此來(lái)調動(dòng)學(xué)生參與活動(dòng)的積極性。

  3、 通過(guò)練習來(lái)檢驗學(xué)生學(xué)習的效果,并在講評中,肯定優(yōu)點(diǎn),指出不足。

  4、 通過(guò)作業(yè),反饋信息,再次對本節課做出評價(jià),以便查漏補缺。

【高中數學(xué)《平面向量數量積》說(shuō)課稿】相關(guān)文章:

《平面向量數量積》說(shuō)課稿09-24

《平面向量的數量積》說(shuō)課稿09-24

《平面向量數量積的坐標表示、模、夾角》說(shuō)課稿09-06

平面向量數量積練習題09-24

空間向量的數量積及其應用說(shuō)課稿08-08

《2.4 平面向量的數量積》測試題09-27

平面向量的數量積的物理背景及其含義教學(xué)反思10-03

《平面向量數量積物理背景及其含義》教學(xué)反思06-17

實(shí)數與向量的積的說(shuō)課稿08-07

西藏| 彭州市| 调兵山市| 榆社县| 黎平县| 西乌珠穆沁旗| 腾冲县| 建宁县| 蚌埠市| 黔江区| 建德市| 高安市| 平昌县| 托里县| 舟曲县| 海兴县| 华宁县| 厦门市| 天门市| 商都县| 弥勒县| 太仆寺旗| 弋阳县| 郁南县| 五峰| 称多县| 夏河县| 峨眉山市| 会理县| 会理县| 三门峡市| 涿鹿县| 茌平县| 河间市| 嘉黎县| 万源市| 马山县| 思南县| 南安市| 兴文县| 江川县|