97骚碰,毛片大片免费看,亚洲第一天堂,99re思思,色好看在线视频播放,久久成人免费大片,国产又爽又色在线观看

高中數學(xué)教學(xué)設計

時(shí)間:2023-05-18 09:48:40 教學(xué)設計 我要投稿

高中數學(xué)教學(xué)設計(合集15篇)

  作為一位杰出的老師,總歸要編寫(xiě)教學(xué)設計,借助教學(xué)設計可以讓教學(xué)工作更加有效地進(jìn)行。那么什么樣的教學(xué)設計才是好的呢?以下是小編收集整理的高中數學(xué)教學(xué)設計,歡迎閱讀與收藏。

高中數學(xué)教學(xué)設計(合集15篇)

高中數學(xué)教學(xué)設計1

  一、教學(xué)內容分析

  圓錐曲線(xiàn)的定義反映了圓錐曲線(xiàn)的本質(zhì)屬性,它是無(wú)數次實(shí)踐后的高度抽象.恰當地利用定義解題,許多時(shí)候能以簡(jiǎn)馭繁.因此,在學(xué)習了橢圓、雙曲線(xiàn)、拋物線(xiàn)的定義及標準方程、幾何性質(zhì)后,再一次強調定義,學(xué)會(huì )利用圓錐曲線(xiàn)定義來(lái)熟練的解題”。

  二、學(xué)生學(xué)習情況分析

  我所任教班級的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學(xué)語(yǔ)言的表達能力也略顯不足。

  三、設計思想

  由于這部分知識較為抽象,如果離開(kāi)感性認識,容易使學(xué)生陷入困境,降低學(xué)習熱情.在教學(xué)時(shí),借助多媒體動(dòng)畫(huà),引導學(xué)生主動(dòng)發(fā)現問(wèn)題、解決問(wèn)題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現、獲取新知,提高教學(xué)效率.

  四、教學(xué)目標

  1.深刻理解并熟練掌握圓錐曲線(xiàn)的定義,能靈活應用定義解決問(wèn)題;熟練掌握焦點(diǎn)坐標、頂點(diǎn)坐標、焦距、離心率、準線(xiàn)方程、漸近線(xiàn)、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線(xiàn)的方程。

  2.通過(guò)對練習,強化對圓錐曲線(xiàn)定義的理解,提高分析、解決問(wèn)題的能力;通過(guò)對問(wèn)題的不斷引申,精心設問(wèn),引導學(xué)生學(xué)習解題的一般方法。

  3.借助多媒體輔助教學(xué),激發(fā)學(xué)習數學(xué)的興趣.

  五、教學(xué)重點(diǎn)與難點(diǎn):

  教學(xué)重點(diǎn)

  1.對圓錐曲線(xiàn)定義的理解

  2.利用圓錐曲線(xiàn)的定義求“最值”

  3.“定義法”求軌跡方程

  教學(xué)難點(diǎn):

  巧用圓錐曲線(xiàn)定義解題

  六、教學(xué)過(guò)程設計

  【設計思路】

  (一)開(kāi)門(mén)見(jiàn)山,提出問(wèn)題

  一上課,我就直截了當地給出——

  例題1:(1) 已知A(-2,0), B(2,0)動(dòng)點(diǎn)M滿(mǎn)足|MA|+|MB|=2,則點(diǎn)M的軌跡是( )。

  (A)橢圓 (B)雙曲線(xiàn) (C)線(xiàn)段 (D)不存在

  (2)已知動(dòng)點(diǎn) M(x,y)滿(mǎn)足(x1)2(y2)2|3x4y|,則點(diǎn)M的軌跡是( )。

  (A)橢圓 (B)雙曲線(xiàn) (C)拋物線(xiàn) (D)兩條相交直線(xiàn)

  【設計意圖】

  定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習和研究數學(xué)的一個(gè)必備條件,而通過(guò)一個(gè)階段的學(xué)習之后,學(xué)生們對圓錐曲線(xiàn)的定義已有了一定的認識,他們是否能真正掌握它們的本質(zhì),是我本節課首先要弄清楚的問(wèn)題。

  為了加深學(xué)生對圓錐曲線(xiàn)定義理解,我以圓錐曲線(xiàn)的定義的運用為主線(xiàn),精心準備了兩道練習題。

  【學(xué)情預設】

  估計多數學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對于圓錐曲線(xiàn)的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著(zhù)說(shuō)出:若想答案是其他選項的話(huà),條件要怎么改?這對于已學(xué)完圓錐曲線(xiàn)這部分知識的學(xué)生來(lái)說(shuō),并不是什么難事。但問(wèn)題(2)就可能讓學(xué)生們費一番周折—— 如果有學(xué)生提出:可以利用變形來(lái)解決問(wèn)題,那么我就可以循著(zhù)他的思路,先對原等式做變形:(x1)2(y2)2

  5這樣,很快就能得出正確結果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5

  入手,考慮通過(guò)適當的變形,轉化為學(xué)生們熟知的兩個(gè)距離公式。

  在對學(xué)生們的解答做出判斷后,我將把問(wèn)題引申為:該雙曲線(xiàn)的中心坐標是 ,實(shí)軸長(cháng)為 ,焦距為 。以深化對概念的理解。

  (二)理解定義、解決問(wèn)題

  例2 (1)已知動(dòng)圓A過(guò)定圓B:x2y26x70的圓心,且與定圓C:xy6x910 相內切,求△ABC面積的最大值。

  (2)在(1)的條件下,給定點(diǎn)P(-2,2), 求|PA|

  【設計意圖】

  運用圓錐曲線(xiàn)定義中的數量關(guān)系進(jìn)行轉化,使問(wèn)題化歸為幾何中求最大(小)值的模式,是解析幾何問(wèn)題中的一種常見(jiàn)題型,也是學(xué)生們比較容易混淆的一類(lèi)問(wèn)題。例2的`設置就是為了方便學(xué)生的辨析。

  【學(xué)情預設】

  根據以往的經(jīng)驗,多數學(xué)生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實(shí)上,解決本題的關(guān)鍵在于能準確寫(xiě)出點(diǎn)A的軌跡,有了練習題1的鋪墊,這個(gè)問(wèn)題對學(xué)生們來(lái)講就顯得頗為簡(jiǎn)單,因此面對例2(1),多數學(xué)生應該能準確給出解答,但是對于例2(2)這樣相對比較陌生的問(wèn)題,學(xué)生就無(wú)從下手。我提醒學(xué)生把3/5和離心率聯(lián)系起來(lái),這樣就容易和第二定義聯(lián)系起來(lái),從而找到解決本題的突破口。

  (三)自主探究、深化認識

  如果時(shí)間允許,練習題將為學(xué)生們提供一次數學(xué)猜想、試驗的機會(huì )——

  練習:設點(diǎn)Q是圓C:(x1)2225|AB|的最小值。 3y225上動(dòng)點(diǎn),點(diǎn)A(1,0)是圓內一點(diǎn),AQ的垂直平分線(xiàn)與CQ交于點(diǎn)M,求點(diǎn)M的軌跡方程。

  引申:若將點(diǎn)A移到圓C外,點(diǎn)M的軌跡會(huì )是什么?

  【設計意圖】 練習題設置的目的是為學(xué)生課外自主探究學(xué)習提供平臺,當然,如果課堂上時(shí)間允許的話(huà),

  可借助“多媒體課件”,引導學(xué)生對自己的結論進(jìn)行驗證。

  【知識鏈接】

  (一)圓錐曲線(xiàn)的定義

  1. 圓錐曲線(xiàn)的第一定義

  2. 圓錐曲線(xiàn)的統一定義

  (二)圓錐曲線(xiàn)定義的應用舉例

  1.雙曲線(xiàn)1的兩焦點(diǎn)為F1、F2,P為曲線(xiàn)上一點(diǎn),若P到左焦點(diǎn)F1的距離為12,求P到右準線(xiàn)的距離。

  2.|PF1||PF2|2.P為等軸雙曲線(xiàn)x2y2a2上一點(diǎn), F1、F2為兩焦點(diǎn),O為雙曲線(xiàn)的中心,求的|PO|取值范圍。

  3.在拋物線(xiàn)y22px上有一點(diǎn)A(4,m),A點(diǎn)到拋物線(xiàn)的焦點(diǎn)F的距離為5,求拋物線(xiàn)的方程和點(diǎn)A的坐標。

  4.(1)已知點(diǎn)F是橢圓1的右焦點(diǎn),M是這橢圓上的動(dòng)點(diǎn),A(2,2)是一個(gè)定點(diǎn),求|MA|+|MF|的最小值。

  x2y211(2)已知A(,3)為一定點(diǎn),F為雙曲線(xiàn)1的右焦點(diǎn),M在雙曲線(xiàn)右支上移動(dòng),當|AM||MF|最小時(shí),求M點(diǎn)的坐標。

  (3)已知點(diǎn)P(-2,3)及焦點(diǎn)為F的拋物線(xiàn)y,在拋物線(xiàn)上求一點(diǎn)M,使|PM|+|FM|最小。

  5.已知A(4,0),B(2,2)是橢圓1內的點(diǎn),M是橢圓上的動(dòng)點(diǎn),求|MA|+|MB|的最小值與最大值。

  七、教學(xué)反思

  1.本課將借助于,將使全體學(xué)生參與活動(dòng)成為可能,使原來(lái)令人難以理解的抽象的數學(xué)理論變得形象,生動(dòng)且通俗易懂,同時(shí),運用“多媒體課件”輔助教學(xué),節省了板演的時(shí)間,從而給學(xué)生留出更多的時(shí)間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機結合的教學(xué)優(yōu)勢。

  2.利用兩個(gè)例題及其引申,通過(guò)一題多變,層層深入的探索,以及對猜測結果的檢測研究,培養學(xué)生思維能力,使學(xué)生從學(xué)會(huì )一個(gè)問(wèn)題的求解到掌握一類(lèi)問(wèn)題的解決方法. 循序漸進(jìn)的讓學(xué)生把握這類(lèi)問(wèn)題的解法;將學(xué)生容易混淆的兩類(lèi)求“最值問(wèn)題”并為一道題,方便學(xué)生進(jìn)行比較、分析。雖然從表面上看,我這一堂課的教學(xué)容量不大,但事實(shí)上,學(xué)生們的思維運動(dòng)量并不會(huì )小。

  總之,如何更好地選擇符合學(xué)生具體情況,滿(mǎn)足教學(xué)目標的例題與練習、靈活把握課堂教學(xué)節奏仍是我今后工作中的一個(gè)重要研究課題.而要能真正進(jìn)行素質(zhì)教育,培養學(xué)生的創(chuàng )新意識,自己首先必須更新觀(guān)念——在教學(xué)中適度使用多媒體技術(shù),讓學(xué)生有參與教學(xué)實(shí)踐的機會(huì ),能夠使學(xué)生在學(xué)習新知識的同時(shí),激發(fā)起求知的欲望,在尋求解決問(wèn)題的辦法的過(guò)程中獲得自信和成功的體驗,于不知不覺(jué)中改善了他們的思維品質(zhì),提高了數學(xué)思維能力。

高中數學(xué)教學(xué)設計2

  一、指導思想與理論依據

  數學(xué)是一門(mén)培養人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過(guò)程。因此本節課我以建構主義的“創(chuàng )設問(wèn)題情境——提出數學(xué)問(wèn)題——嘗試解決問(wèn)題——驗證解決方法”為主,主要采用觀(guān)察、啟發(fā)、類(lèi)比、引導、探索相結合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問(wèn)題形象化,使教學(xué)目標體現的更加完美。

  二、教材分析

  三角函數的誘導公式是普通高中課程標準實(shí)驗教科書(shū)(人教A版)數學(xué)必修四,第一章第三節的內容,其主要內容是三角函數誘導公式中的公式(二)至公式(六).本節是第一課時(shí),教學(xué)內容為公式(二)、(三)、(四).教材要求通過(guò)學(xué)生在已經(jīng)掌握的任意角的三角函數的定義和誘導公式(一)的基礎上,利用對稱(chēng)思想發(fā)現任意角 與 、 、 終邊的對稱(chēng)關(guān)系,發(fā)現他們與單位圓的交點(diǎn)坐標之間關(guān)系,進(jìn)而發(fā)現他們的三角函數值的關(guān)系,即發(fā)現、掌握、應用三角函數的誘導公式公式(二)、(三)、(四).同時(shí)教材滲透了轉化與化歸等數學(xué)思想方法,為培養學(xué)生養成良好的學(xué)習習慣提出了要求.為此本節內容在三角函數中占有非常重要的地位.

  三、學(xué)情分析

  本節課的授課對象是本校高一(1)班全體同學(xué),本班學(xué)生水平處于中等偏下,但本班學(xué)生具有善于動(dòng)手的良好學(xué)習習慣,所以采用發(fā)現的教學(xué)方法應該能輕松的完成本節課的教學(xué)內容.

  四、教學(xué)目標

  (1).基礎知識目標:理解誘導公式的發(fā)現過(guò)程,掌握正弦、余弦、正切的誘導公式;

  (2).能力訓練目標:能正確運用誘導公式求任意角的正弦、余弦、正切值,以及進(jìn)行簡(jiǎn)單的三角函數求值與化簡(jiǎn);

  (3).創(chuàng )新素質(zhì)目標:通過(guò)對公式的推導和運用,提高三角恒等變形的能力和滲透化歸、數形結合的數學(xué)思想,提高學(xué)生分析問(wèn)題、解決問(wèn)題的能力;

  (4).個(gè)性品質(zhì)目標:通過(guò)誘導公式的學(xué)習和應用,感受事物之間的普通聯(lián)系規律,運用化歸等數學(xué)思想方法,揭示事物的本質(zhì)屬性,培養學(xué)生的唯物史觀(guān).

  五、教學(xué)重點(diǎn)和難點(diǎn)

  1.教學(xué)重點(diǎn)

  理解并掌握誘導公式.

  2.教學(xué)難點(diǎn)

  正確運用誘導公式,求三角函數值,化簡(jiǎn)三角函數式.

  六、教法學(xué)法以及預期效果分析

  高中數學(xué)優(yōu)秀教案高中數學(xué)教學(xué)設計與教學(xué)反思

  “授人以魚(yú)不如授之以魚(yú)”, 作為一名老師,我們不僅要傳授給學(xué)生數學(xué)知識,更重要的是傳授給學(xué)生數學(xué)思想方法, 如何實(shí)現這一目的,要求我們每一位教者苦心鉆研、認真探究.下面我從教法、學(xué)法、預期效果等三個(gè)方面做如下分析.

  1.教法

  數學(xué)教學(xué)是數學(xué)思維活動(dòng)的教學(xué),而不僅僅是數學(xué)活動(dòng)的結果,數學(xué)學(xué)習的目的不僅僅是為了獲得數學(xué)知識,更主要作用是為了訓練人的思維技能,提高人的思維品質(zhì).

  在本節課的教學(xué)過(guò)程中,本人以學(xué)生為主題,以發(fā)現為主線(xiàn),盡力滲透類(lèi)比、化歸、數形結合等數學(xué)思想方法,采用提出問(wèn)題、啟發(fā)引導、共同探究、綜合應用等教學(xué)模式,還給學(xué)生“時(shí)間”、“空間”, 由易到難,由特殊到一般,盡力營(yíng)造輕松的學(xué)習環(huán)境,讓學(xué)生體味學(xué)習的快樂(lè )和成功的喜悅.

  2.學(xué)法

  “現代的文盲不是不識字的人,而是沒(méi)有掌握學(xué)習方法的人”,很多課堂教學(xué)常常以高起點(diǎn)、大容量、快推進(jìn)的做法,以便教給學(xué)生更多的知識點(diǎn),卻忽略了學(xué)生接受知識需要時(shí)間消化,進(jìn)而泯滅了學(xué)生學(xué)習的興趣與熱情.如何能讓學(xué)生最大程度的消化知識,提高學(xué)習熱情是教者必須思考的問(wèn)題.

  在本節課的教學(xué)過(guò)程中,本人引導學(xué)生的學(xué)法為思考問(wèn)題、共同探討、解決問(wèn)題 簡(jiǎn)單應用、重現探索過(guò)程、練習鞏固。讓學(xué)生參與探索的全部過(guò)程,讓學(xué)生在獲取新知識及解決問(wèn)題的方法后,合作交流、共同探索,使之由被動(dòng)學(xué)習轉化為主動(dòng)的自主學(xué)習.

  3.預期效果

  本節課預期讓學(xué)生能正確理解誘導公式的發(fā)現、證明過(guò)程,掌握誘導公式,并能熟練應用誘導公式了解一些簡(jiǎn)單的化簡(jiǎn)問(wèn)題.

  七、教學(xué)流程設計

  (一)創(chuàng )設情景

  1.復習銳角300,450,600的三角函數值;

  2.復習任意角的三角函數定義;

  3.問(wèn)題:由 ,你能否知道sin2100的值嗎?引如新課.

  設計意圖

  高中數學(xué)優(yōu)秀教案 高中數學(xué)教學(xué)設計與教學(xué)反思

  自信的鼓勵是增強學(xué)生學(xué)習數學(xué)的自信,簡(jiǎn)單易做的題加強了每個(gè)學(xué)生學(xué)習的'熱情,具體數據問(wèn)題的出現,讓學(xué)生既有好像會(huì )做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機會(huì )證明我能行,從而思考解決的辦法.

  (二)新知探究

  1. 讓學(xué)生發(fā)現300角的終邊與2100角的終邊之間有什么關(guān)系;

  2.讓學(xué)生發(fā)現300角的終邊和2100角的終邊與單位圓的交點(diǎn)的坐標有什么關(guān)系;

  3.Sin2100與sin300之間有什么關(guān)系.

  設計意圖

  由特殊問(wèn)題的引入,使學(xué)生容易了解,實(shí)現教學(xué)過(guò)程的平淡過(guò)度,為同學(xué)們探究發(fā)現任意角 與 的三角函數值的關(guān)系做好鋪墊.

  (三)問(wèn)題一般化

  探究一

  1.探究發(fā)現任意角 的終邊與 的終邊關(guān)于原點(diǎn)對稱(chēng);

  2.探究發(fā)現任意角 的終邊和 角的終邊與單位圓的交點(diǎn)坐標關(guān)于原點(diǎn)對稱(chēng);

  3.探究發(fā)現任意角 與 的三角函數值的關(guān)系.

  設計意圖

  首先應用單位圓,并以對稱(chēng)為載體,用聯(lián)系的觀(guān)點(diǎn),把單位圓的性質(zhì)與三角函數聯(lián)系起來(lái),數形結合,問(wèn)題的設計提問(wèn)從特殊到一般,從線(xiàn)對稱(chēng)到點(diǎn)對稱(chēng)到三角函數值之間的關(guān)系,逐步上升,一氣呵成誘導公式二.同時(shí)也為學(xué)生將要自主發(fā)現、探索公式三和四起到示范作用,下面練習設計為了熟悉公式一,讓學(xué)生感知到成功的喜悅,進(jìn)而敢于挑戰,敢于前進(jìn)

  (四)練習

  利用誘導公式(二),口答下列三角函數值.

  (1). ;(2). ;(3). .

  喜悅之后讓我們重新啟航,接受新的挑戰,引入新的問(wèn)題.

  (五)問(wèn)題變形

  由sin3000= -sin600 出發(fā),用三角的定義引導學(xué)生求出 sin(-3000),Sin150 0值,讓學(xué)生聯(lián)想若已知sin3000= -sin600 ,能否求出sin(-3000),Sin150 0)的值. 學(xué)生自主探究

高中數學(xué)教學(xué)設計3

  教學(xué)目標

  1.掌握等比數列前項和公式,并能運用公式解決簡(jiǎn)單的問(wèn)題.

 。1)理解公式的推導過(guò)程,體會(huì )轉化的思想;

 。2)用方程的思想認識等比數列前項和公式,利用公式知三求一;與通項公式結合知三求二;

  2.通過(guò)公式的靈活運用,進(jìn)一步滲透方程的思想、分類(lèi)討論的思想、等價(jià)轉化的思想.

  3.通過(guò)公式推導的教學(xué),對學(xué)生進(jìn)行思維的嚴謹性的訓練,培養他們實(shí)事求是的科學(xué)態(tài)度.

  教學(xué)建議

  教材分析

 。1)知識結構

  先用錯位相減法推出等比數列前項和公式,而后運用公式解決一些問(wèn)題,并將通項公式與前項和公式結合解決問(wèn)題,還要用錯位相減法求一些數列的前項和.

 。2)重點(diǎn)、難點(diǎn)分析

  教學(xué)重點(diǎn)、難點(diǎn)是等比數列前項和公式的推導與應用.公式的推導中蘊含了豐富的數學(xué)思想、方法(如分類(lèi)討論思想,錯位相減法等),這些思想方法在其他數列求和問(wèn)題中多有涉及,所以對等比數列前項和公式的要求,不單是要記住公式,更重要的是掌握推導公式的方法.等比數列前項和公式是分情況討論的,在運用中要特別注意和兩種情況.

  教學(xué)建議

 。1)本節內容分為兩課時(shí),一節為等比數列前項和公式的推導與應用,一節為通項公式與前項和公式的綜合運用,另外應補充一節數列求和問(wèn)題.

 。2)等比數列前項和公式的推導是重點(diǎn)內容,引導學(xué)生觀(guān)察實(shí)例,發(fā)現規律,歸納總結,證明結論.

 。3)等比數列前項和公式的推導的其他方法可以給出,提高學(xué)生學(xué)習的興趣.

 。4)編擬例題時(shí)要全面,不要忽略的情況.

 。5)通項公式與前項和公式的綜合運用涉及五個(gè)量,已知其中三個(gè)量可求另兩個(gè)量,但解指數方程難度大.

 。6)補充可以化為等差數列、等比數列的數列求和問(wèn)題.

  教學(xué)設計示例

  課題:等比數列前項和的公式

  教學(xué)目標

 。1)通過(guò)教學(xué)使學(xué)生掌握等比數列前項和公式的推導過(guò)程,并能初步運用這一方法求一些數列的前項和.

 。2)通過(guò)公式的推導過(guò)程,培養學(xué)生猜想、分析、綜合能力,提高學(xué)生的數學(xué)素質(zhì).

 。3)通過(guò)教學(xué)進(jìn)一步滲透從特殊到一般,再從一般到特殊的辯證觀(guān)點(diǎn),培養學(xué)生嚴謹的學(xué)習態(tài)度.

  教學(xué)重點(diǎn),難點(diǎn)

  教學(xué)重點(diǎn)是公式的推導及運用,難點(diǎn)是公式推導的思路.

  教學(xué)用具

  幻燈片,課件,電腦.

  教學(xué)方法

  引導發(fā)現法.

  教學(xué)過(guò)程

  一、新課引入:

 。▎(wèn)題見(jiàn)教材第129頁(yè))提出問(wèn)題:(幻燈片)

  二、新課講解:

  記,式中有64項,后項與前項的'比為公比2,當每一項都乘以2后,中間有62項是對應相等的,作差可以相互抵消.

 。ò鍟(shū))即,①

  ,②

 、冢俚眉.

  由此對于一般的等比數列,其前項和,如何化簡(jiǎn)?

 。ò鍟(shū))等比數列前項和公式

  仿照公比為2的等比數列求和方法,等式兩邊應同乘以等比數列的公比,即

 。ò鍟(shū))③兩端同乘以,得

 、,

 、郏艿芒,(提問(wèn)學(xué)生如何處理,適時(shí)提醒學(xué)生注意的取值)

  當時(shí),由③可得(不必導出④,但當時(shí)設想不到)

  當時(shí),由⑤得.

  于是

  反思推導求和公式的方法——錯位相減法,可以求形如的數列的和,其中為等差數列,為等比數列.

 。ò鍟(shū))例題:求和:.

  設,其中為等差數列,為等比數列,公比為,利用錯位相減法求和.

  解:,

  兩端同乘以,得,

  兩式相減得

  于是.

  說(shuō)明:錯位相減法實(shí)際上是把一個(gè)數列求和問(wèn)題轉化為等比數列求和的問(wèn)題.

  公式其它應用問(wèn)題注意對公比的分類(lèi)討論即可.

  三、小結:

  1.等比數列前項和公式推導中蘊含的思想方法以及公式的應用;

  2.用錯位相減法求一些數列的前項和.

  四、作業(yè):略

高中數學(xué)教學(xué)設計4

  教學(xué)準備

  教學(xué)目標

  解三角形及應用舉例

  教學(xué)重難點(diǎn)

  解三角形及應用舉例

  教學(xué)過(guò)程

  一.基礎知識精講

  掌握三角形有關(guān)的定理

  利用正弦定理,可以解決以下兩類(lèi)問(wèn)題:

  (1)已知兩角和任一邊,求其他兩邊和一角;

  (2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進(jìn)一步求出其他的邊和角);利用余弦定理,可以解決以下兩類(lèi)問(wèn)題:

  (1)已知三邊,求三角;

  (2)已知兩邊和它們的夾角,求第三邊和其他兩角。

  掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關(guān)三角形中的三角函數問(wèn)題.

  二.問(wèn)題討論

  思維點(diǎn)撥:已知兩邊和其中一邊的`對角解三角形問(wèn)題,用正弦定理解,但需注意解的情況的討論.

  思維點(diǎn)撥::三角形中的三角變換,應靈活運用正、余弦定理.在求值時(shí),要利用三角函數的有關(guān)性質(zhì).

  例6:在某海濱城市附近海面有一臺風(fēng),據檢測,當前臺風(fēng)中心位于城市O(如圖)的東偏南方向300 km的海面P處,并以20 km / h的速度向西偏北的方向移動(dòng),臺風(fēng)侵襲的范圍為圓形區域,當前半徑為60 km,并以10 km / h的速度不斷增加,問(wèn)幾小時(shí)后該城市開(kāi)始受到臺風(fēng)的侵襲。

  一. 小結:

  1.利用正弦定理,可以解決以下兩類(lèi)問(wèn)題:

  (1)已知兩角和任一邊,求其他兩邊和一角;

  (2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進(jìn)一步求出其他的邊和角);

  2.利用余弦定理,可以解決以下兩類(lèi)問(wèn)題:

  (1)已知三邊,求三角;

  (2)已知兩邊和它們的夾角,求第三邊和其他兩角。

  3.邊角互化是解三角形問(wèn)題常用的手段.

  三.作業(yè):P80闖關(guān)訓練

高中數學(xué)教學(xué)設計5

  一、教學(xué)內容分析:

  本節教材選自人教a版數學(xué)必修②第二章第一節課,本節內容在立幾學(xué)習中起著(zhù)承上啟下的作用,具有重要的意義與地位。本節課是在前面已學(xué)空間點(diǎn)、線(xiàn)、面位置關(guān)系的基礎作為學(xué)習的出發(fā)點(diǎn),結合有關(guān)的實(shí)物模型,通過(guò)直觀(guān)感知、操作確認(合情推理,不要求證明)歸納出直線(xiàn)與平面平行的判定定理。本節課的學(xué)習對培養學(xué)生空間感與邏輯推理能力起到重要作用,特別是對線(xiàn)線(xiàn)平行、面面平行的判定的學(xué)習作用重大。

  二、學(xué)生學(xué)習情況分析:

  任教的學(xué)生在年段屬中上程度,學(xué)生學(xué)習興趣較高,但學(xué)習立幾所具備的語(yǔ)言表達及空間感與空間想象能力相對不足,學(xué)習方面有一定困難。

  三、設計思想

  本節課的設計遵循從具體到抽象的原則,適當運用多媒體輔助教學(xué)手段,借助實(shí)物模型,通過(guò)直觀(guān)感知,操作確認,合情推理,歸納出直線(xiàn)與平面平行的判定定理,將合情推理與演繹推理有機結合,讓學(xué)生在觀(guān)察分析、自主探索、合作交流的過(guò)程中,揭示直線(xiàn)與平面平行的判定、理解數學(xué)的概念,領(lǐng)會(huì )數學(xué)的思想方法,養成積極主動(dòng)、勇于探索、自主學(xué)習的學(xué)習方式,發(fā)展學(xué)生的空間觀(guān)念和空間想象力,提高學(xué)生的數學(xué)邏輯思維能力。

  四、教學(xué)目標

  通過(guò)直觀(guān)感知——觀(guān)察——操作確認的認識方法理解并掌握直線(xiàn)與平面平行的判定定理,掌握直線(xiàn)與平面平行的畫(huà)法并能準確使用數學(xué)符號語(yǔ)言、文字語(yǔ)言表述判定定理。培養學(xué)生觀(guān)察、探究、發(fā)現的能力和空間想象能力、邏輯思維能力。讓學(xué)生在觀(guān)察、探究、發(fā)現中學(xué)習,在自主合作、交流中學(xué)習,體驗學(xué)習的樂(lè )趣,增強自信心,樹(shù)立積極的學(xué)習態(tài)度,提高學(xué)習的自我效能感。

  五、教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn)是判定定理的引入與理解,難點(diǎn)是判定定理的應用及立幾空間感、空間觀(guān)念的形成與邏輯思維能力的培養。

  六、教學(xué)過(guò)程設計

  (一)知識準備、新課引入

  提問(wèn)1:根據公共點(diǎn)的情況,空間中直線(xiàn)a和平面?有哪幾種位置關(guān)系?并完成下表:(多媒體幻燈片演示) a??

  提問(wèn)2:根據直線(xiàn)與平面平行的定義(沒(méi)有公共點(diǎn))來(lái)判定直線(xiàn)與平面平行你認為方便嗎?談?wù)勀愕目捶,并指出是否有別的判定途徑。

  [設計意圖:通過(guò)提問(wèn),學(xué)生復習并歸納空間直線(xiàn)與平面位置關(guān)系引入本節課題,并為探尋直線(xiàn)與平面平行判定定理作好準備。]

  (二)判定定理的探求過(guò)程

  1、直觀(guān)感知

  提問(wèn):根據同學(xué)們日常生活的觀(guān)察,你們能感知到并舉出直線(xiàn)與平面平行的具體事例嗎?

  生1:例舉日光燈與天花板,樹(shù)立的電線(xiàn)桿與墻面。

  生2:門(mén)轉動(dòng)到離開(kāi)門(mén)框的任何位置時(shí),門(mén)的邊緣線(xiàn)始終與門(mén)框所在的平面平行(由學(xué)生到教室門(mén)前作演示),然后教師用多媒體動(dòng)畫(huà)演示。

  [學(xué)情預設:此處的預設與生成應當是很自然的,但老師要預見(jiàn)到可能出現的情況如電線(xiàn)桿與墻面可能共面的情形及門(mén)要離開(kāi)門(mén)框的位置等情形。]

  2、動(dòng)手實(shí)踐

  教師取出預先準備好的直角梯形泡沫板演示:當把互相平行的一邊放在講臺桌面上并轉動(dòng),觀(guān)察另一邊與桌面的位置給人以平行的感覺(jué),而當把直角腰放在桌面上并轉動(dòng),觀(guān)察另一邊與桌面給人的印象就不平行。又如老師直立講臺,則大家會(huì )感覺(jué)到老師(視為線(xiàn))與四周墻面平行,如老師向前或后傾斜則感覺(jué)老師(視為線(xiàn))與左、右墻面平行,如老師向左、右傾斜,則感覺(jué)老師(視為線(xiàn))與前、后墻面平行(老師也可用事先準備的木條放在講臺桌上作上述情形的演示)。

  [設計意圖:設置這樣動(dòng)手實(shí)踐的情境,是為了讓學(xué)生更清楚地看到線(xiàn)面平行與否的關(guān)鍵因素是什么,使學(xué)生學(xué)在情境中,思在情理中,感悟在內心中,學(xué)自己身邊的數學(xué),領(lǐng)悟空間觀(guān)念與空間圖形性質(zhì)。]

  3、探究思考

  (1)上述演示的直線(xiàn)與平面位置關(guān)系為何有如此的不同?關(guān)鍵是什么因素起了作用呢?通過(guò)觀(guān)察感知發(fā)現直線(xiàn)與平面平行,關(guān)鍵是三個(gè)要素:①平面外一條線(xiàn)②我們把直線(xiàn)與平面相交或平行的位置關(guān)系統稱(chēng)為直線(xiàn)在平面外,用符號表示為平面內一條直線(xiàn)③這兩條直線(xiàn)平行

  (2)如果平面外的直線(xiàn)a與平面?內的一條直線(xiàn)b平行,那么直線(xiàn)a與平面?平行嗎?

  4、歸納確認:(多媒體幻燈片演示)

  直線(xiàn)和平面平行的判定定理:平面外的一條直線(xiàn)與平面內的一條直線(xiàn)平行,則該直線(xiàn)和這個(gè)平面平行。

  簡(jiǎn)單概括:(內外)線(xiàn)線(xiàn)平行?線(xiàn)面平行a符號表示:ba||? a||b??

  溫馨提示:

  作用:判定或證明線(xiàn)面平行。

  關(guān)鍵:在平面內找(或作)出一條直線(xiàn)與面外的直線(xiàn)平行。

  思想:空間問(wèn)題轉化為平面問(wèn)題

  (三)定理運用,問(wèn)題探究(多媒體幻燈片演示)

  1、想一想:

  (1)判斷下列命題的真假?說(shuō)明理由:

 、偃绻粭l直線(xiàn)不在平面內,則這條直線(xiàn)就與平面平行()

 、谶^(guò)直線(xiàn)外一點(diǎn)可以作無(wú)數個(gè)平面與這條直線(xiàn)平行( )

 、垡恢本(xiàn)上有二個(gè)點(diǎn)到平面的距離相等,則這條直線(xiàn)與平面平行( )

  (2)若直線(xiàn)a與平面?內無(wú)數條直線(xiàn)平行,則a與?的位置關(guān)系是( ) a、a ||? b、a?? c、a ||?或a?? d、a?? [學(xué)情預設:設計這組問(wèn)題目的是強調定理中三個(gè)條件的重要性,同時(shí)預設(1)中的③學(xué)生可能認為正確的,這樣就無(wú)法達到老師的預設與生成的目的,這時(shí)教師要引導學(xué)生思考,讓學(xué)生想象的空間更廣闊些。此外教師可用預先準備好的羊毛針與泡沫板進(jìn)行演示,讓羊毛針穿過(guò)泡沫板以舉不平行的反例,如果有的學(xué)生空間想象力強,能按老師的要求生成正確的結果則就由個(gè)別學(xué)生進(jìn)行演示。]

  2、作一作:

  設a、b是二異面直線(xiàn),則過(guò)a、b外一點(diǎn)p且與a、b都平行的平面存在嗎?若存在請畫(huà)出平面,不存在說(shuō)明理由?

  先由學(xué)生討論交流,教師提問(wèn),然后教師總結,并用準備好的羊毛針、鐵線(xiàn)、泡沫板等演示平面的形成過(guò)程,最后借多媒體展示作圖的動(dòng)畫(huà)過(guò)程。

  [設計意圖:這是一道動(dòng)手操作的問(wèn)題,不僅是為了拓展加深對定理的認識,更重要的是培養學(xué)生空間感與思維的嚴謹性。]

  3、證一證:

  例1(見(jiàn)課本60頁(yè)例1):已知空間四邊形abcd中,e、f分別是ab、ad的中點(diǎn),求證:ef ||平面bcd。

  變式一:空間四邊形abcd中,e、f、g、h分別是邊ab、bc、cd、da中點(diǎn),連結ef、fg、gh、he、ac、bd請分別找出圖中滿(mǎn)足線(xiàn)面平行位置關(guān)系的所有情況。(共6組線(xiàn)面平行)變式二:在變式一的圖中如作pq?ef,使p點(diǎn)在線(xiàn)段ae上、q點(diǎn)在線(xiàn)段fc上,連結ph、qg,并繼續探究圖中所具有的線(xiàn)面平行位置關(guān)系?(在變式一的基礎上增加了4組線(xiàn)面平行),并判斷四邊形efgh、pqgh分別是怎樣的四邊形,說(shuō)明理由。

  [設計意圖:設計二個(gè)變式訓練,目的是通過(guò)問(wèn)題探究、討論,思辨,及時(shí)鞏固定理,運用定理,培養學(xué)生的識圖能力與邏輯推理能力。]例2:如圖,在正方體abcd—a1b1c1d1中,e、f分別是棱bc與c1d1中點(diǎn),求證:ef ||平面bdd1b1分析:根據判定定理必須在平

  面bdd1b1內找(作)一條線(xiàn)與ef平行,聯(lián)想到中點(diǎn)問(wèn)題找中點(diǎn)解決的方法,可以取bd或b1d1中點(diǎn)而證之。

  思路一:取bd中點(diǎn)g連d1g、eg,可證d1gef為平行四邊形。

  思路二:取d1b1中點(diǎn)h連hb、hf,可證hfeb為平行四邊形。

  [知識鏈接:根據空間問(wèn)題平面化的思想,因此把找空間平行直線(xiàn)問(wèn)題轉化為找平行四邊形或三角形中位線(xiàn)問(wèn)題,這樣就自然想到了找中點(diǎn)。平行問(wèn)題找中點(diǎn)解決是個(gè)好途徑好方法。這種思想方法是解決立幾論證平行問(wèn)題,培養邏輯思維能力的重要思想方法]

  4、練一練:

  練習1:見(jiàn)課本6頁(yè)練習1、2

  練習2:將兩個(gè)全等的正方形abcd和abef拼在一起,設m、n分別為ac、bf中點(diǎn),求證:mn ||平面bce。

  變式:若將練習2中m、n改為ac、bf分點(diǎn)且am = fn,試問(wèn)結論仍成立嗎?試證之。

  [設計意圖:設計這組練習,目的是為了鞏固與深化定理的運用,特別是通過(guò)練習2及其變式的訓練,讓學(xué)生能在復雜的圖形中去識圖,去尋找分析問(wèn)題、解決問(wèn)題的途徑與方法,以達到逐步培養空間感與邏輯思維能力。]

  (四)總結

  先由學(xué)生口頭總結,然后教師歸納總結(由多媒體幻燈片展示):

  1、線(xiàn)面平行的判定定理:平面外的一條直線(xiàn)與平面內的.一條直線(xiàn)平行,則該直線(xiàn)與這個(gè)平面平行。

  2、定理的符號表示:ba||? a||b??簡(jiǎn)述:(內外)線(xiàn)線(xiàn)平行則線(xiàn)面平行

  3、定理運用的關(guān)鍵是找(作)面內的線(xiàn)與面外的線(xiàn)平行,途徑有:取中點(diǎn)利用平行四邊形或三角形中位線(xiàn)性質(zhì)等。

  七、教學(xué)反思

  本節“直線(xiàn)與平面平行的判定”是學(xué)生學(xué)習空間位置關(guān)系的判定與性質(zhì)的第一節課,也是學(xué)生開(kāi)始學(xué)習立幾演澤推理論述的思維方式方法,因此本節課學(xué)習對發(fā)展學(xué)生的空間觀(guān)念和邏輯思維能力是非常重要的。

  本節課的設計遵循“直觀(guān)感知——操作確認——思辯論證”的認識過(guò)程,注重引導學(xué)生通過(guò)觀(guān)察、操作交流、討論、有條理的思考和推理等活動(dòng),從多角度認識直線(xiàn)和平面平行的判定方法,讓學(xué)生通過(guò)自主探索、合作交流,進(jìn)一步認識和掌握空間圖形的性質(zhì),積累數學(xué)活動(dòng)的經(jīng)驗,發(fā)展合情推理、發(fā)展空間觀(guān)念與推理能力。

  本節課的設計注重訓練學(xué)生準確表達數學(xué)符號語(yǔ)言、文字語(yǔ)言及圖形語(yǔ)言,加強各種語(yǔ)言的互譯。比如上課開(kāi)始時(shí)的復習引入,讓學(xué)生用三種語(yǔ)言的表達,動(dòng)手實(shí)踐、定理探求過(guò)程以及定理描述也注重三種語(yǔ)言的表達,對例題的講解與分析也注意指導學(xué)生三種語(yǔ)言的表達。

  本節課對定理的探求與認識過(guò)程的設計始終貫徹直觀(guān)在先,感知在先,學(xué)自己身邊的數學(xué),感知生活中包涵的數學(xué)現象與數學(xué)原理,體驗數學(xué)即生活的道理,比如讓學(xué)生舉生活中能感知線(xiàn)面平行的例子,學(xué)生會(huì )舉出日光燈與天花板,電線(xiàn)桿與墻面,轉動(dòng)的門(mén)等等,同時(shí)老師的舉例也很貼進(jìn)生活,如老師直立時(shí)與四周墻面平行,而向前、向后傾斜則只與左右墻面平行,而向左、右傾斜則與前后黑板面平行。然后引導學(xué)生從中抽象概括出定理。

高中數學(xué)教學(xué)設計6

  函數的奇偶性

  函數的奇偶性是函數的重要性質(zhì),是對函數概念的深化.它把自變量取相反數時(shí)函數值間的關(guān)系定量地聯(lián)系在一起,反映在圖像上為:偶函數的圖像關(guān)于y軸對稱(chēng),奇函數的圖像關(guān)于坐標原點(diǎn)成中心對稱(chēng).這樣,就從數、形兩個(gè)角度對函數的奇偶性進(jìn)行了定量和定性的分析.教材首先通過(guò)對具體函數的圖像及函數值對應表歸納和抽象,概括出了函數奇偶性的準確定義.然后,為深化對概念的理解,舉出了奇函數、偶函數、既是奇函數又是偶函數的函數和非奇非偶函數的實(shí)例.最后,為加強前后聯(lián)系,從各個(gè)角度研究函數的性質(zhì),講清了奇偶性和單調性的聯(lián)系.這節課的重點(diǎn)是函數奇偶性的定義,難點(diǎn)是根據定義判斷函數的奇偶性.

  教學(xué)目標:

  1.通過(guò)具體函數,讓學(xué)生經(jīng)歷奇函數、偶函數定義的討論,體驗數學(xué)概念的建立過(guò)程,培養其抽象的概括能力.

  2.理解、掌握函數奇偶性的定義,奇函數和偶函數圖像的特征,并能初步應用定義判斷一些簡(jiǎn)單函數的奇偶性.

  3.在經(jīng)歷概念形成的`過(guò)程中,培養學(xué)生歸納、抽象概括能力,體驗數學(xué)既是抽象的又是具體的任務(wù)分析

  這節內容學(xué)生在初中雖沒(méi)學(xué)過(guò),但已經(jīng)學(xué)習過(guò)具有奇偶性的具體的函數:正比例函數y=kx,反比例函數,(k≠0),二次函數y=ax,(a≠0),故可在此基礎上,引入奇、偶函數的概念,以便于學(xué)生理解.在引入概念時(shí)始終結合具體函數的圖像,以增加直觀(guān)性,這樣更符合學(xué)生的認知規律,同時(shí)為闡述奇、偶函數的幾何特征埋下了伏筆.對于概念可從代數特征與幾何特征兩個(gè)角度去分析,讓學(xué)生理解:奇函數、偶函數的定義域是關(guān)于原點(diǎn)對稱(chēng)的非空數集;對于在有定義的奇函數y=f(x),一定有f(0)=0;既是奇函數,又是偶函數的函數有f(x)=0,x∈R.在此基礎上,讓學(xué)生了解:奇函數、偶函數的矛盾概念———非奇非偶函數.關(guān)于單調性與奇偶性關(guān)系,引導學(xué)生拓展延伸,可以取得理想效果.

  一、問(wèn)題情景

  1.觀(guān)察如下兩圖,思考并討論以下問(wèn)題:

  (1)這兩個(gè)函數圖像有什么共同特征?

  (2)相應的兩個(gè)函數值對應表是如何體現這些特征的?可以看到兩個(gè)函數的圖像都關(guān)于y軸對稱(chēng).從函數值對應表可以看到,當自變量x取一對相反數時(shí),相應的兩個(gè)函數值相同.

  對于函數f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事實(shí)上,對于R內任意的一個(gè)x,都有f(-x)=(-x)2=x2=f(x).此時(shí),稱(chēng)函數y=x2為偶函數.

  2.觀(guān)察函數f(x)=x和f(x)=的圖像,并完成下面的兩個(gè)函數值對應表,然后說(shuō)出這兩個(gè)函數有什么共同特征.

  22可以看到兩個(gè)函數的圖像都關(guān)于原點(diǎn)對稱(chēng).函數圖像的這個(gè)特征,反映在解析式上就是:當自變量x取一對相反數時(shí),相應的函數值f(x)也是一對相反數,即對任一x∈R都有f(-x)=-f(x).此時(shí),稱(chēng)函數y=f(x)為奇函數.

  二、建立模型

  由上面的分析討論引導學(xué)生建立奇函數、偶函數的定義

  1.奇、偶函數的定義

  如果對于函數f(x)的定義域內任意一個(gè)x,都有f(-x)=-f(x),那么函數f(x)就叫作奇函數.如果對于函數f(x)的定義域內任意一個(gè)x,都有f(-x)=f(x),那么函數f(x)就叫作偶函數.

  2.提出問(wèn)題,組織學(xué)生討論

  (1)如果定義在R上的函數f(x)滿(mǎn)足f(-2)=f(2),那么f(x)是偶函數嗎? (f(x)不一定是偶函數)

  (2)奇、偶函數的圖像有什么特征?

  (奇、偶函數的圖像分別關(guān)于原點(diǎn)、y軸對稱(chēng)) (3)奇、偶函數的定義域有什么特征? (奇、偶函數的定義域關(guān)于原點(diǎn)對稱(chēng))

  三、解釋?xiě)肹例題]

  1.判斷下列函數的奇偶性.

  注:①規范解題格式;②對于(5)要注意定義域x∈(-1,1].

  2.已知:定義在R上的函數f(x)是奇函數,當x>0時(shí),f(x)=x(1+x),求f(x)的表達式.

  解:(1)任取x<0,則-x>0,∴f(-x)=-x(1-x),

  而f(x)是奇函數,∴f(-x)=-f(x).∴f(x)=x(1-x).

  (2)當x=0時(shí),f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.

  3.已知:函數f(x)是偶函數,且在(-∞,0)上是減函數,判斷f(x)在(0,+∞)上是增函數,還是減函數,并證明你的結論.

  解:先結合圖像特征:偶函數的圖像關(guān)于y軸對稱(chēng),猜想f(x)在(0,+∞)上是增函數,證明如下:

  任取x1>x2>0,則-x1<-x2<0.

  ∵f(x)在(-∞,0)上是減函數,∴f(-x1)>f(-x2).又f(x)是偶函數,∴f(x1)>f(x2).

  ∴f(x)在(0,+∞)上是增函數.

  思考:奇函數或偶函數在關(guān)于原點(diǎn)對稱(chēng)的兩個(gè)區間上的單調性有何關(guān)系?

  [練習]

  1.已知:函數f(x)是奇函數,在[a,b]上是增函數(b>a>0),問(wèn)f(x)在[-b,-a]上的單調性如何.

  2. f(x)=-x3|x|的大致圖像可能是()

  3.函數f(x)=ax2+bx+c,(a,b,c∈R),當a,b,c滿(mǎn)足什么條件時(shí),(1)函數f(x)是偶函數.(2)函數f(x)是奇函數. 4.設f(x),g(x)分別是R上的奇函數和偶函數,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.

  四、拓展延伸

  1.有既是奇函數,又是偶函數的函數嗎?若有,有多少個(gè)? 2.設f(x),g(x)分別是R上的奇函數,偶函數,試研究:(1)F(x)=f(x)·g(x)的奇偶性. (2)G(x)=|f(x)|+g(x)的奇偶性.

  3.已知a∈R,f(x)=a-,試確定a的值,使f(x)是奇函數.

  4.一個(gè)定義在R上的函數,是否都可以表示為一個(gè)奇函數與一個(gè)偶函數的和的形式?

高中數學(xué)教學(xué)設計7

  教學(xué)目標

  1.明確等差數列的定義.

  2.掌握等差數列的通項公式,會(huì )解決知道中的三個(gè),求另外一個(gè)的問(wèn)題

  3.培養學(xué)生觀(guān)察、歸納能力.

  教學(xué)重點(diǎn)

  1. 等差數列的概念;

  2. 等差數列的通項公式

  教學(xué)難點(diǎn)

  等差數列“等差”特點(diǎn)的理解、把握和應用

  教具準備

  投影片1張

  教學(xué)過(guò)程

  (I)復習回顧

  師:上兩節課我們共同學(xué)習了數列的定義及給出數列的兩種方法通項公式和遞推公式。這兩個(gè)公式從不同的角度反映數列的特點(diǎn),下面看一些例子。(放投影片)

  (Ⅱ)講授新課

  師:看這些數列有什么共同的特點(diǎn)?

  1,2,3,4,5,6; ①

  10,8,6,4,2,…; ②

  生:積極思考,找上述數列共同特點(diǎn)。

  對于數列①(1≤n≤6);(2≤n≤6)

  對于數列②-2n(n≥1)(n≥2)

  對于數列③(n≥1)(n≥2)

  共同特點(diǎn):從第2項起,第一項與它的前一項的'差都等于同一個(gè)常數。

  師:也就是說(shuō),這些數列均具有相鄰兩項之差“相等”的特點(diǎn)。具有這種特點(diǎn)的數列,我們把它叫做等差數。

  一、定義:

  等差數列:一般地,如果一個(gè)數列從第2項起,每一項與空的前一項的差等于同一個(gè)常數,那么這個(gè)數列就叫做等差數列,這個(gè)常數叫做等差數列的公差,通常用字母d表示。

  如:上述3個(gè)數列都是等差數列,它們的公差依次是1,-2, 。

  二、等差數列的通項公式

  師:等差數列定義是由一數列相鄰兩項之間關(guān)系而得。若一等差數列的首項是,公差是d,則據其定義可得:

  若將這n-1個(gè)等式相加,則可得:

  即:即:即:……

  由此可得:師:看來(lái),若已知一數列為等差數列,則只要知其首項和公差d,便可求得其通項。

  如數列①(1≤n≤6)

  數列②:(n≥1)

  數列③:(n≥1)

  由上述關(guān)系還可得:即:則:=如:三、例題講解

  例1:(1)求等差數列8,5,2…的第20項

  (2)-401是不是等差數列-5,-9,-13…的項?如果是,是第幾項?

  解:(1)由n=20,得(2)由得數列通項公式為:由題意可知,本題是要回答是否存在正整數n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個(gè)數列的第100項。

  (Ⅲ)課堂練習

  生:(口答)課本P118練習3

  (書(shū)面練習)課本P117練習1

  師:組織學(xué)生自評練習(同桌討論)

  (Ⅳ)課時(shí)小結

  師:本節主要內容為:①等差數列定義。

  即(n≥2)

 、诘炔顢盗型椆 (n≥1)

  推導出公式:(V)課后作業(yè)

  一、課本P118習題3.2 1,2

  二、1.預習內容:課本P116例2P117例4

  2.預習提綱:

 、偃绾螒玫炔顢盗械亩x及通項公式解決一些相關(guān)問(wèn)題?

 、诘炔顢盗杏心男┬再|(zhì)?

高中數學(xué)教學(xué)設計8

  教學(xué)準備

  教學(xué)目標

  掌握三角函數模型應用基本步驟:

 。1)根據圖象建立解析式;

 。2)根據解析式作出圖象;

 。3)將實(shí)際問(wèn)題抽象為與三角函數有關(guān)的簡(jiǎn)單函數模型。

  教學(xué)重難點(diǎn)

  利用收集到的數據作出散點(diǎn)圖,并根據散點(diǎn)圖進(jìn)行函數擬合,從而得到函數模型。

  教學(xué)過(guò)程

  一、練習講解:《習案》作業(yè)十三的第3、4題

  3、一根為L(cháng)cm的線(xiàn),一端固定,另一端懸掛一個(gè)小球,組成一個(gè)單擺,小球擺動(dòng)時(shí),離開(kāi)平衡位置的位移s(單位:cm)與時(shí)間t(單位:s)的函數關(guān)系是

 。1)求小球擺動(dòng)的周期和頻率;(2)已知g=24500px/s2,要使小球擺動(dòng)的周期恰好是1秒,線(xiàn)的長(cháng)度l應當是多少?

 。1)選用一個(gè)函數來(lái)近似描述這個(gè)港口的水深與時(shí)間的函數關(guān)系,并給出整點(diǎn)時(shí)的水深的近似數值

 。ň_到0.001)。

 。2)一條貨船的吃水深度(船底與水面的距離)為4米,安全條例規定至少要有1.5米的安全間隙(船底與洋底的距離),該船何時(shí)能進(jìn)入港口?在港口能呆多久?

 。3)若某船的吃水深度為4米,安全間隙為1.5米,該船在2:00開(kāi)始卸貨,吃水深度以每小時(shí)0.3

  米的速度減少,那么該船在什么時(shí)間必須停止卸貨,將船駛向較深的'水域?

  本題的解答中,給出貨船的進(jìn)、出港時(shí)間,一方面要注意利用周期性以及問(wèn)題的條件,另一方面還要注意考慮實(shí)際意義。關(guān)于課本第64頁(yè)的“思考”問(wèn)題,實(shí)際上,在貨船的安全水深正好與港口水深相等時(shí)停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時(shí)間發(fā)動(dòng)螺旋槳。

  練習:教材P65面3題

  三、小結:1、三角函數模型應用基本步驟:

 。1)根據圖象建立解析式;

 。2)根據解析式作出圖象;

 。3)將實(shí)際問(wèn)題抽象為與三角函數有關(guān)的簡(jiǎn)單函數模型。

  2、利用收集到的數據作出散點(diǎn)圖,并根據散點(diǎn)圖進(jìn)行函數擬合,從而得到函數模型。

  四、作業(yè)《習案》作業(yè)十四及十五。

高中數學(xué)教學(xué)設計9

  一、單元教學(xué)內容

 。ǎ保┧惴ǖ幕靖拍

 。ǎ玻┧惴ǖ幕窘Y構:順序、條件、循環(huán)結構

 。ǎ常┧惴ǖ幕菊Z(yǔ)句:輸入、輸出、賦值、條件、循環(huán)語(yǔ)句

  二、單元教學(xué)內容分析

  算法是數學(xué)及其應用的重要組成部分,是計算科學(xué)的重要基礎。隨著(zhù)現代信息技術(shù)飛速發(fā)展,算法在科學(xué)技術(shù)、社會(huì )發(fā)展中發(fā)揮著(zhù)越來(lái)越大的作用,并日益融入社會(huì )生活的許多方面,算法思想已經(jīng)成為現代人應具備的一種數學(xué)素養。需要特別指出的是,中國古代數學(xué)中蘊涵了豐富的算法思想。在本模塊中,學(xué)生將在中學(xué)教育階段初步感受算法思想的基礎上,結合對具體數學(xué)實(shí)例的分析,體驗程序框圖在解決問(wèn)題中的作用;通過(guò)模仿、操作、探索,學(xué)習設計程序框圖表達解決問(wèn)題的過(guò)程;體會(huì )算法的基本思想以及算法的重要性和有效性,發(fā)展有條理的思考與表達的能力,提高邏輯思維能力

  三、單元教學(xué)課時(shí)安排:

 。、算法的基本概念 3課時(shí)

 。、程序框圖與算法的基本結構 5課時(shí)

 。、算法的基本語(yǔ)句 2課時(shí)

  四、單元教學(xué)目標分析

 。、通過(guò)對解決具體問(wèn)題過(guò)程與步驟的分析體會(huì )算法的思想,了解算法的含義

 。、通過(guò)模仿、操作、探索,經(jīng)歷通過(guò)設計程序框圖表達解決問(wèn)題的過(guò)程。在具體問(wèn)題的解決過(guò)程中理解程序框圖的三種基本邏輯結構:順序、條件、循環(huán)結構。

 。、經(jīng)歷將具體問(wèn)題的程序框圖轉化為程序語(yǔ)句的過(guò)程,理解幾種基本算法語(yǔ)句:輸入、輸出、斌值、條件、循環(huán)語(yǔ)句,進(jìn)一步體會(huì )算法的基本思想。

 。、通過(guò)閱讀中國古代數學(xué)中的算法案例,體會(huì )中國古代數學(xué)對世界數學(xué)發(fā)展的貢獻。

  五、單元教學(xué)重點(diǎn)與難點(diǎn)分析

 。、重點(diǎn)

 。ǎ保├斫馑惴ǖ暮x (2)掌握算法的基本結構 (3)會(huì )用算法語(yǔ)句解決簡(jiǎn)單的實(shí)際問(wèn)題

 。、難點(diǎn)

 。ǎ保┏绦蚩驁D (2)變量與賦值 (3)循環(huán)結構 (4)算法設計

  六、單元總體教學(xué)方法

  本章教學(xué)采用啟發(fā)式教學(xué),輔以觀(guān)察法、發(fā)現法、練習法、講解法。采用這些方法的原因是學(xué)生的邏輯能力不是很強,只能通過(guò)對實(shí)例的認真領(lǐng)會(huì )及一定的練習才能掌握本節知識。

  七、單元展開(kāi)方式與特點(diǎn)

 。、展開(kāi)方式

  自然語(yǔ)言→程序框圖→算法語(yǔ)句

 。、特點(diǎn)

 。ǎ保┞菪仙 分層遞進(jìn) (2)整合滲透 前呼后應 (3)三線(xiàn)合

  一 橫向貫通 (4)彈性處理 多樣選擇

  八、單元教學(xué)過(guò)程分析

  1. 算法基本概念教學(xué)過(guò)程分析

  對生活中的實(shí)際問(wèn)題通過(guò)對解決具體問(wèn)題過(guò)程與步驟的分析(喝茶,如二元一次方程組求解問(wèn)題),體會(huì )算法的思想,了解算法的含義,能用自然語(yǔ)言描述算法。

  2.算法的流程圖教學(xué)過(guò)程分析

  對生活中的實(shí)際問(wèn)題通過(guò)模仿、操作、探索,經(jīng)歷通過(guò)設計流程圖表達解決問(wèn)題的過(guò)程,了解算法和程序語(yǔ)言的區別;在具體問(wèn)題的解決過(guò)程中,理解流程圖的三種基本邏輯結構:順序、條件分支、循環(huán),會(huì )用流程圖表示算法。

  3. 基本算法語(yǔ)句教學(xué)過(guò)程分析

  經(jīng)歷將具體生活中問(wèn)題的.流程圖轉化為程序語(yǔ)言的過(guò)程,理解表示的幾種基本算法語(yǔ)句:賦值語(yǔ)句、輸入語(yǔ)句、輸出語(yǔ)句、條件語(yǔ)句、循環(huán)語(yǔ)句,進(jìn)一步體會(huì )算法的基本思想。能用自然語(yǔ)言、流程圖和基本算法語(yǔ)句表達算法,

  4. 通過(guò)閱讀中國古代數學(xué)中的算法案例,體會(huì )中國古代數學(xué)對世界數學(xué)發(fā)展的貢獻。

  九、單元評價(jià)設想

  1.重視對學(xué)生數學(xué)學(xué)習過(guò)程的評價(jià)

  關(guān)注學(xué)生在數學(xué)語(yǔ)言的學(xué)習過(guò)程中,是否對用集合語(yǔ)言描述數學(xué)和現實(shí)生活中的問(wèn)題充滿(mǎn)興趣;在學(xué)習過(guò)程中,能否體會(huì )集合語(yǔ)言準確、簡(jiǎn)潔的特征;是否能積極、主動(dòng)地發(fā)展自己運用數學(xué)語(yǔ)言進(jìn)行交流的能力。

  2.正確評價(jià)學(xué)生的數學(xué)基礎知識和基本技能

  關(guān)注學(xué)生在本章(節)及今后學(xué)習中,讓學(xué)生集中學(xué)習算法的初步知識,主要包括算法的基本結構、基本語(yǔ)句、基本思想等。算法思想將貫穿高中數學(xué)課程的相關(guān)部分,在其他相關(guān)部分還將進(jìn)一步學(xué)習算法

高中數學(xué)教學(xué)設計10

  一、教學(xué)目標

  1、在初中學(xué)過(guò)原命題、逆命題知識的基礎上,初步理解四種命題。

  2、給一個(gè)比較簡(jiǎn)單的命題(原命題),可以寫(xiě)出它的逆命題、否命題和逆否命題。

  3、通過(guò)對四種命題之間關(guān)系的學(xué)習,培養學(xué)生邏輯推理能力

  4、初步培養學(xué)生反證法的數學(xué)思維。

  二、教學(xué)分析

  重點(diǎn):四種命題;難點(diǎn):四種命題的關(guān)系

  1。本小節首先從初中數學(xué)的命題知識,給出四種命題的概念,接著(zhù),講述四種命題的關(guān)系,最后,在初中的基礎上,結合四種命題的知識,進(jìn)一步講解反證法。

  2。教學(xué)時(shí),要注意控制教學(xué)要求。本小節的內容,只涉及比較簡(jiǎn)單的命題,不研究含有邏輯聯(lián)結詞“或”、“且”、“非”的命題的逆命題、否命題和逆否命題,

 。常叭魀則q”形式的命題,也是一種復合命題,并且,其中的p與q,可以是命題也可以是開(kāi)語(yǔ)句,例如,命題“若,則x,y全為0”,其中的p與q,就是開(kāi)語(yǔ)句。對學(xué)生,只要求能分清命題“若p則q”中的條件與結論就可以了,不必考慮p與q是命題,還是開(kāi)語(yǔ)句。

  三、教學(xué)手段和方法(演示教學(xué)法和循序漸進(jìn)導入法)

  1。以故事形式入題

  2多媒體演示

  四、教學(xué)過(guò)程

 。ㄒ唬┮耄阂粋(gè)生活中有趣的與命題有關(guān)的笑話(huà):某人要請甲乙丙丁吃飯,時(shí)間到了,只有甲乙丙三人按時(shí)赴約。丁卻打電話(huà)說(shuō)“有事不能參加”主人聽(tīng)了隨口說(shuō)了句“該來(lái)的沒(méi)來(lái)”甲聽(tīng)了臉色一沉,一聲不吭的走了,主人愣了一下又說(shuō)了一句“哎,不該走的走了”乙聽(tīng)了大怒,拂袖即去。主人這時(shí)還沒(méi)意識到又順口說(shuō)了一句:“俺說(shuō)的又不是你”。這時(shí)丙怒火中燒不辭而別。四個(gè)客人沒(méi)來(lái)的沒(méi)來(lái),來(lái)的又走了。主人請客不成還得罪了三家。大家肯定都覺(jué)得這個(gè)人不會(huì )說(shuō)話(huà),但是你想過(guò)這里面所蘊涵的數學(xué)思想嗎?通過(guò)這節課的學(xué)習我們就能揭開(kāi)它的廬山真面,學(xué)生的.興奮點(diǎn)被緊緊抓住,躍躍欲試!

  設計意圖:創(chuàng )設情景,激發(fā)學(xué)生學(xué)習興趣

 。ǘ⿵土曁釂(wèn):

  1.命題“同位角相等,兩直線(xiàn)平行”的條件與結論各是什么?

  2.把“同位角相等,兩直線(xiàn)平行”看作原命題,它的逆命題是什么?

  3.原命題真,逆命題一定真嗎?

  “同位角相等,兩直線(xiàn)平行”這個(gè)原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.

  學(xué)生活動(dòng):

  口答:(l)若同位角相等,則兩直線(xiàn)平行;(2)若一個(gè)四邊形是正方形,則它的四條邊相等.

  設計意圖: 通過(guò)復習舊知識,打下學(xué)習否命題、逆否命題的基礎.

 。ㄈ┬抡n講解:

  1.命題“同位角相等,兩直線(xiàn)平行”的條件是“同位角相等”,結論是“兩直線(xiàn)平行”;如果把“同位角相等,兩直線(xiàn)平行”看作原命題,它的逆命題就是“兩直線(xiàn)平行,同位角相等”。也就是說(shuō),把原命題的結論作為條件,條件作為結論,得到的命題就叫做原命題的逆命題。

  2.把命題“同位角相等,兩直線(xiàn)平行”的條件與結論同時(shí)否定,就得到新命題“同位角不相等,兩直線(xiàn)不平行”,這個(gè)新命題就叫做原命題的否命題。

  3.把命題“同位角相等,兩直線(xiàn)平行”的條件與結論互相交換并同時(shí)否定,就得到新命題“兩直線(xiàn)不平行,同位角不相等”,這個(gè)新命題就叫做原命題的逆否命題。

 。ㄋ模┙M織討論:

  讓學(xué)生歸納什么是否命題,什么是逆否命題。

  例1及例2

 。ㄎ澹┱n堂探究:“兩條直線(xiàn)不平行,則同位角不相等”是否真?“若一個(gè)四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?

  學(xué)生活動(dòng):

  討論后回答

  這兩個(gè)逆否命題都真.

  原命題真,逆否命題也真

  引導學(xué)生討論原命題的真假與其他三種命題的真

  假有什么關(guān)系?舉例加以說(shuō)明,同學(xué)們踴躍發(fā)言。

 。┱n堂小結:

  1、一般地,用p和q分別表示原命題的條件和結論,用¬p和¬q分別表示p和q否定時(shí),四種命題的形式就是:

  原命題若p則q;

  逆命題若q則p;(交換原命題的條件和結論)

  否命題,若¬p則¬q;(同時(shí)否定原命題的條件和結論)

  逆否命題若¬q則¬p。(交換原命題的條件和結論,并且同時(shí)否定)

  2、四種命題的關(guān)系

 。1).原命題為真,它的逆命題不一定為真.

 。2).原命題為真,它的否命題不一定為真.

 。3).原命題為真,它的逆否命題一定為真

 。ㄆ撸┗乜垡

  分析引入中的笑話(huà),先討論,后總結:現在我們來(lái)分析一下主人說(shuō)的四句話(huà):

  第一句:“該來(lái)的沒(méi)來(lái)”

  其逆否命題是“不該來(lái)的來(lái)了”,甲認為自己是不該來(lái)的,所以甲走了。

  第二句:“不該走的走了”,其逆否命題為“該走的沒(méi)走”,乙認為自己該走,所以乙也走了。

  第三句:“俺說(shuō)的不是你(指乙)”其值為真其非命題:“俺說(shuō)的是你”為假,則說(shuō)的是他(指丙)為真。所以,丙認為說(shuō)的是自己,所以丙也走了。

  同學(xué)們,生活中處處是數學(xué),期待我們善于發(fā)現的眼睛

  五、作業(yè)

  1.設原命題是“若

  斷它們的真假. ,則 ”,寫(xiě)出它的逆命題、否命題與逆否命題,并分別判

  2.設原命題是“當 時(shí),若 ,則 ”,寫(xiě)出它的逆命題、否定命與逆否命題,并分別判斷它們的真假.

高中數學(xué)教學(xué)設計11

  教學(xué)目標

 。1)理解四種命題的概念;

 。2)理解四種命題之間的相互關(guān)系,能由原命題寫(xiě)出其他三種形式;

 。3)理解一個(gè)命題的真假與其他三個(gè)命題真假間的關(guān)系;

 。4)初步掌握反證法的概念及反證法證題的基本步驟;

 。5)通過(guò)對四種命題之間關(guān)系的學(xué)習,培養學(xué)生邏輯推理能力;

 。6)通過(guò)對四種命題的存在性和相對性的認識,進(jìn)行辯證唯物主義觀(guān)點(diǎn)教育;

 。7)培養學(xué)生用反證法簡(jiǎn)單推理的技能,從而發(fā)展學(xué)生的思維能力.

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):四種命題之間的關(guān)系;難點(diǎn):反證法的運用.

  教學(xué)過(guò)程設計

  第一課時(shí):四種命題

  一、導入新課

  【練習】1.把下列命題改寫(xiě)成“若p則q”的形式:

 。╨)同位角相等,兩直線(xiàn)平行;

 。2)正方形的四條邊相等.

  2.什么叫互逆命題?上述命題的逆命題是什么?

  將命題寫(xiě)成“若p則q”的形式,關(guān)鍵是找到命題的條件p與q結論.

  如果第一個(gè)命題的條件是第二個(gè)命題的結論,且第一個(gè)命題的結論是第二個(gè)命題的條件,那么這兩個(gè)命題叫做互道命題.

  上述命題的道命題是“若一個(gè)四邊形的四條邊相等,則它是正方形”和“若兩條直線(xiàn)平行,則同位角相等”.

  值得指出的是原命題和逆命題是相對的.我們也可以把逆命題當成原命題,去求它的逆命題.

  3.原命題真,逆命題一定真嗎?

  “同位角相等,兩直線(xiàn)平行”這個(gè)原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.

  學(xué)生活動(dòng):

  口答:(l)若同位角相等,則兩直線(xiàn)平行;(2)若一個(gè)四邊形是正方形,則它的四條邊相等.

  設計意圖:

  通過(guò)復習舊知識,打下學(xué)習否命題、逆否命題的基礎.

  二、新課

  【設問(wèn)】命題“同位角相等,兩條直線(xiàn)平行”除了能構成它的逆命題外,是否還可以構成其它形式的命題?

  【講述】可以將原命題的條件和結論分別否定,構成“同位角不相等,則兩直線(xiàn)不平行”,這個(gè)命題叫原命題的否命題.

  【提問(wèn)】你能由原命題“正方形的`四條邊相等”構成它的否命題嗎?

  學(xué)生活動(dòng):

  口答:若一個(gè)四邊形不是正方形,則它的四條邊不相等.

  教師活動(dòng):

  【講述】一個(gè)命題的條件和結論分別是另一個(gè)命題的條件的否定和結論的否定,這樣的兩個(gè)命題叫做互否命題.把其中一個(gè)命題叫做原命題,另一個(gè)命題叫做原命題的否命題.

  若用p和q分別表示原命題的條件和結論,用┐p和┐q分別表示p和q的否定.

  【板書(shū)】原命題:若p則q;

  否命題:若┐p則q┐.

  【提問(wèn)】原命題真,否命題一定真嗎?舉例說(shuō)明?

  學(xué)生活動(dòng):

  講論后回答:

  原命題“同位角相等,兩直線(xiàn)平行”真,它的否命題“同位角不相等,兩直線(xiàn)不平行”不真.

  原命題“正方形的四條邊相等”真,它的否命題“若一個(gè)四邊形不是正方形,則它的四條邊不相等”不真.

  由此可以得原命題真,它的否命題不一定真.

  設計意圖:

  通過(guò)設問(wèn)和討論,讓學(xué)生在自己舉例中研究如何由原命題構成否命題及判斷它們的真假,調動(dòng)學(xué)生學(xué)習的積極性.

  教師活動(dòng):

  【提問(wèn)】命題“同位角相等,兩條直線(xiàn)平行”除了能構成它的逆命題和否命題外,還可以不可以構成別的命題?

  學(xué)生活動(dòng):

  討論后回答

  【總結】可以將這個(gè)命題的條件和結論互換后再分別將新的條件和結論分別否定構成命題“兩條直線(xiàn)不平行,則同位角不相等”,這個(gè)命題叫原命題的逆否命題.

  教師活動(dòng):

  【提問(wèn)】原命題“正方形的四條邊相等”的逆否命題是什么?

  學(xué)生活動(dòng):

  口答:若一個(gè)四邊形的四條邊不相等,則不是正方形.

  教師活動(dòng):

  【講述】一個(gè)命題的條件和結論分別是另一個(gè)命題的結論的否定和條件的否定,這樣的兩個(gè)命題叫做互為逆否命題.把其中一個(gè)命題叫做原命題,另一個(gè)命題就叫做原命題的逆否命題.

  原命題是“若 p則 q ”,則逆否命題為“若┐q 則┐p .

  【提問(wèn)】“兩條直線(xiàn)不平行,則同位角不相等”是否真?“若一個(gè)四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?

  學(xué)生活動(dòng):

  討論后回答

  這兩個(gè)逆否命題都真.

  原命題真,逆否命題也真.

  教師活動(dòng):

  【提問(wèn)】原命題的真假與其他三種命題的真

  假有什么關(guān)系?舉例加以說(shuō)明?

  【總結】1.原命題為真,它的逆命題不一定為真.

  2.原命題為真,它的否命題不一定為真.

  3.原命題為真,它的逆否命題一定為真.

  設計意圖:

  通過(guò)設問(wèn)和討論,讓學(xué)生在自己舉例中研究如何由原命題構成逆否命題及判斷它們的真假,調動(dòng)學(xué)生學(xué)的積極性.

  教師活動(dòng):

  三、課堂練習

  1.若原命題是“若p則q”,其它三種命題的形式怎樣表示?請寫(xiě)在方框內?

  學(xué)生活動(dòng):筆答

  教師活動(dòng):

  2.根據上圖所給出的箭頭,寫(xiě)出箭頭兩頭命題之間的關(guān)系?舉例加以說(shuō)明?

  學(xué)生活動(dòng):討論后回答

  設計意圖:

  通過(guò)學(xué)生自己填圖,使學(xué)生掌握四種命題的形式和它們之間的關(guān)系.

  教師活動(dòng):

高中數學(xué)教學(xué)設計12

  教學(xué)目標:

  1.掌握基本事件的概念;

  2.正確理解古典概型的兩大特點(diǎn):有限性、等可能性;

  3.掌握古典概型的概率計算公式,并能計算有關(guān)隨機事件的概率.

  教學(xué)重點(diǎn):

  掌握古典概型這一模型.

  教學(xué)難點(diǎn):

  如何判斷一個(gè)實(shí)驗是否為古典概型,如何將實(shí)際問(wèn)題轉化為古典概型問(wèn)題.

  教學(xué)方法:

  問(wèn)題教學(xué)、合作學(xué)習、講解法、多媒體輔助教學(xué).

  教學(xué)過(guò)程:

  一、問(wèn)題情境

  1.有紅心1,2,3和黑桃4,5這5張撲克牌,將其牌點(diǎn)向下置于桌上,現從中任意抽取一張,則抽到的牌為紅心的概率有多大?

  二、學(xué)生活動(dòng)

  1.進(jìn)行大量重復試驗,用“抽到紅心”這一事件的頻率估計概率,發(fā)現工作量較大且不夠準確;

  2.(1)共有“抽到紅心1” “抽到紅心2” “抽到紅心3” “抽到黑桃4” “抽到黑桃5”5種情況,由于是任意抽取的,可以認為出現這5種情況的可能性都相等;

 。2)6個(gè);即“1點(diǎn)”、“2點(diǎn)”、“3點(diǎn)”、“4點(diǎn)”、“5點(diǎn)”和“6點(diǎn)”,

  這6種情況的可能性都相等;

  三、建構數學(xué)

  1.介紹基本事件的概念,等可能基本事件的概念;

  2.讓學(xué)生自己總結歸納古典概型的兩個(gè)特點(diǎn)(有限性)、(等可能性);

  3.得出隨機事件發(fā)生的概率公式:

  四、數學(xué)運用

  1.例題.

  例1

  有紅心1,2,3和黑桃4,5這5張撲克牌,將其牌點(diǎn)向下置于桌上,現從中任意抽取2張共有多少個(gè)基本事件?(用枚舉法,列舉時(shí)要有序,要注意“不重不漏”)

  探究(1):一只口袋內裝有大小相同的5只球,其中3只白球,2只黑球,從中一次摸出2只球,共有多少個(gè)基本事件?該實(shí)驗為古典概型嗎?(為什么對球進(jìn)行編號?)

  探究(2):拋擲一枚硬幣2次有(正,反)、(正,正)、(反,反)3個(gè)基本事件,對嗎?

  學(xué)生活動(dòng):探究(1)如果不對球進(jìn)行編號,一次摸出2只球可能有兩白、一黑一白、兩黑三種情況,“摸到兩黑”與“摸到兩白”的可能性相同;而事實(shí)上“摸到兩白”的機會(huì )要比“摸到兩黑”的機會(huì )大.記白球為1,2,3號,黑球為4,5號,通過(guò)枚舉法發(fā)現有10個(gè)基本事件,而且每個(gè)基本事件發(fā)生的可能性相同.

  探究(2):拋擲一枚硬幣2次,有(正,正)、(正,反)、(反,正)、(反,反)四個(gè)基本事件.

 。ㄔO計意圖:加深對古典概型的特點(diǎn)之一等可能基本事件概念的理解.)

  例2

  一只口袋內裝有大小相同的5只球,其中3只白球,2只黑球,從中

  一次摸出2只球,則摸到的兩只球都是白球的概率是多少?

  問(wèn)題:在運用古典概型計算事件的概率時(shí)應當注意什么?

 、倥袛喔怕誓P褪欠駷楣诺涓判

 、谡页鲭S機事件A中包含的基本事件的個(gè)數和試驗中基本事件的總數.

  教師示范并總結用古典概型計算隨機事件的概率的步驟

  例3

  同時(shí)拋兩顆骰子,觀(guān)察向上的點(diǎn)數,問(wèn):

 。1)共有多少個(gè)不同的可能結果?

 。2)點(diǎn)數之和是6的可能結果有多少種?

 。3)點(diǎn)數之和是6的概率是多少?

  問(wèn)題:如何準確的寫(xiě)出“同時(shí)拋兩顆骰子”所有基本事件的個(gè)數?

  學(xué)生活動(dòng):用課本第102頁(yè)圖3-2-2,可直觀(guān)的列出事件A中包含的基本事件的個(gè)數和試驗中基本事件的總數.

  問(wèn)題:點(diǎn)數之和是3的倍數的可能結果有多少種?

  (介紹圖表法)

  例4

  甲、乙兩人作出拳游戲(錘子、剪刀、布),求:

 。1)平局的'概率;(2)甲贏(yíng)的概率;(3)乙贏(yíng)的概率.

  設計意圖:進(jìn)一步提高學(xué)生對將實(shí)際問(wèn)題轉化為古典概型問(wèn)題的能力.

  2.練習.

 。1)一枚硬幣連擲3次,只有一次出現正面的概率為_(kāi)________.

 。2)在20瓶飲料中,有3瓶已過(guò)了保質(zhì)期,從中任取1瓶,取到已過(guò)保質(zhì)期的飲料的概率為_(kāi)________..

 。3)第103頁(yè)練習1,2.

 。4)從1,2,3,…,9這9個(gè)數字中任取2個(gè)數字,

 、2個(gè)數字都是奇數的概率為_(kāi)________;

 、2個(gè)數字之和為偶數的概率為_(kāi)________.

  五、要點(diǎn)歸納與方法小結

  本節課學(xué)習了以下內容:

  1.基本事件,古典概型的概念和特點(diǎn);

  2.古典概型概率計算公式以及注意事項;

  3.求基本事件總數常用的方法:列舉法、圖表法.

高中數學(xué)教學(xué)設計13

  一、教材分析

  本小節選自《普通高中課程標準數學(xué)教科書(shū)-數學(xué)必修(一)》(人教版)第二章基本初等函數(1)2.2.2對數函數及其性質(zhì)(第一課時(shí)),主要內容是學(xué)習對數函數的定義、圖象、性質(zhì)及初步應用。對數函數是繼指數函數之后的又一個(gè)重要初等函數,無(wú)論從知識或思想方法的角度對數函數與指數函數都有許多類(lèi)似之處。與指數函數相比,對數函數所涉及的知識更豐富、方法更靈活,能力要求也更高。學(xué)習對數函數是對指數函數知識和方法的鞏固、深化和提高,也為解決函數綜合問(wèn)題及其在實(shí)際上的應用奠定良好的基礎。雖然這個(gè)內容十分熟悉,但新教材做了一定的改動(dòng),如何設計能夠符合新課標理念,是人們十分關(guān)注的,正因如此,本人選擇這課題立求某些方面有所突破。

  二、學(xué)生學(xué)習情況分析

  剛從初中升入高一的學(xué)生,仍保留著(zhù)初中生許多學(xué)習特點(diǎn),能力發(fā)展正處于形象思維向抽象思維轉折階段,但更注重形象思維。由于函數概念十分抽象,又以對數運算為基礎,同時(shí),初中函數教學(xué)要求降低,初中生運算能力有所下降,這雙重問(wèn)題增加了對數函數教學(xué)的難度。教師必須認識到這一點(diǎn),教學(xué)中要控制要求的拔高,關(guān)注學(xué)習過(guò)程。

  三、設計理念

  本節課以建構主義基本理論為指導,以新課標基本理念為依據進(jìn)行設計的,針對學(xué)生的學(xué)習背景,對數函數的教學(xué)首先要挖掘其知識背景貼近學(xué)生實(shí)際,其次,激發(fā)學(xué)生的學(xué)習熱情,把學(xué)習的主動(dòng)權交給學(xué)生,為他們提供自主探究、合作交流的機會(huì ),確實(shí)改變學(xué)生的學(xué)習方式。

  四、教學(xué)目標

  1.通過(guò)具體實(shí)例,直觀(guān)了解對數函數模型所刻畫(huà)的數量關(guān)系,初步理解對數函數的概念,體會(huì )對數函數是一類(lèi)重要的函數模型;

  2.能借助計算器或計算機畫(huà)出具體對數函數的圖象,探索并了解對數函數的單調性與特殊點(diǎn);

  3.通過(guò)比較、對照的方法,引導學(xué)生結合圖象類(lèi)比指數函數,探索研究對數函數的性質(zhì),培養學(xué)生運用函數的觀(guān)點(diǎn)解決實(shí)際問(wèn)題。

  五、教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn)是掌握對數函數的圖象和性質(zhì),難點(diǎn)是底數對對數函數值變化的影響.

  六、教學(xué)過(guò)程設計

  教學(xué)流程:背景材料→引出課題→函數圖象→函數性質(zhì)→問(wèn)題解決→歸納小結

  (一)熟悉背景、引入課題

  1.讓學(xué)生看材料:

  材料1(幻燈):馬王堆女尸千年不腐之謎:一九七二年,馬王堆考古發(fā)現震驚世界,專(zhuān)家發(fā)掘西漢辛追遺尸時(shí),形體完整,全身潤澤,皮膚仍有彈性,關(guān)節還可以活動(dòng),骨質(zhì)比現在六十歲的正常人還好,是世界上發(fā)現的首例歷史悠久的濕尸。大家知道,世界發(fā)現的不腐之尸都是在干燥的環(huán)境風(fēng)干而成,譬如沙漠環(huán)境,這類(lèi)干尸雖然肌膚未腐,是因為干燥不利細菌繁殖,但關(guān)節和一般人死后一樣,是僵硬的,而馬王堆辛追夫人卻是在濕潤的環(huán)境中保存二千多年,而且關(guān)節可以活動(dòng)。人們最關(guān)注有兩個(gè)問(wèn)題,第一:怎么鑒定尸體的年份?第二:是什么環(huán)境使尸體未腐?其中第一個(gè)問(wèn)題與數學(xué)有關(guān)。

  圖4—1 (如圖4—1在長(cháng)沙馬王堆“沉睡”近2200年的古長(cháng)沙國丞相夫人辛追,日前奇跡般地“復活”了)那么,考古學(xué)家是怎么計算出古長(cháng)沙國丞相夫人辛追“沉睡”近2200年?上面已經(jīng)知道考古學(xué)家是通過(guò)提取尸體的殘留物碳14的殘留量p,利用t?logp 57302估算尸體出土的年代,不難發(fā)現:對每一個(gè)碳14的含量的取值,通過(guò)這個(gè)對應關(guān)系,生物死亡年數t都有唯一的值與之對應,從而t是p的函數;

  如圖4—2材料2(幻燈):某種細胞分裂時(shí),由1個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè)??,如果要求這種細胞經(jīng)過(guò)多少次分裂,大約可以得到細胞1萬(wàn)個(gè),10萬(wàn)個(gè)??,不難發(fā)現:分裂次數y就是要得到的細胞個(gè)數x的函數,即y?log2x;

  圖4—2 1.引導學(xué)生觀(guān)察這些函數的特征:含有對數符號,底數是常數,真數是變量,從而得出對數函數的定義:函數y?logax(a?0,且a?1)叫做對數函數,其中x是自變量,函數的定義域是(0,+∞).

  1對數函數的定義與指數函數類(lèi)似,都是形式定義,注意辨別.如:注意:○ x2對數函數對底數的限制:(a?0,都不是對數函數.○5y?2log2x,y?log5且a?1).

  3.根據對數函數定義填空;

  例1 (1)函數y=logax的定義域是___________ (其中a>0,a≠1) (2)函數y=loga(4-x)的定義域是___________ (其中a>0,a≠1)說(shuō)明:本例主要考察對數函數定義中底數和定義域的限制,加深對概念的理

  解,所以把教材中的解答題改為填空題,節省時(shí)間,點(diǎn)到為止,以避免挖深、拓展、引入復合函數的概念。

  [設計意圖:新課標強調“考慮到多數高中生的認知特點(diǎn),為了有助于他們對函數概念本質(zhì)的理解,不妨從學(xué)生自己的'生活經(jīng)歷和實(shí)際問(wèn)題入手”。因此,新課引入不是按舊教材從反函數出發(fā),而是選擇從兩個(gè)材料引出對數函數的概念,讓學(xué)生熟悉它的知識背景,初步感受對數函數是刻畫(huà)現實(shí)世界的又一重要數學(xué)模型。這樣處理,對數函數顯得不抽象,學(xué)生容易接受,降低了新課教學(xué)的起點(diǎn)] 2

  (二)嘗試畫(huà)圖、形成感知1.確定探究問(wèn)題

  教師:當我們知道對數函數的定義之后,緊接著(zhù)需要探討什么問(wèn)題?學(xué)生1:對數函數的圖象和性質(zhì)

  教師:你能類(lèi)比前面研究指數函數的思路,提出研究對數函數圖象和性質(zhì)的方

  法嗎?

  學(xué)生2:先畫(huà)圖象,再根據圖象得出性質(zhì)

  教師:畫(huà)對數函數的圖象是否象指數函數那樣也需要分類(lèi)?學(xué)生3:按a?1和0?a?1分類(lèi)討論

  教師:觀(guān)察圖象主要看哪幾個(gè)特征?

  學(xué)生4:從圖象的形狀、位置、升降、定點(diǎn)等角度去識圖

  教師:在明確了探究方向后,下面,按以下步驟共同探究對數函數的圖象:步驟一:(1)用描點(diǎn)法在同一坐標系中畫(huà)出下列對數函數的圖象y?log2xy?log1x 2 (2)用描點(diǎn)法在同一坐標系中畫(huà)出下列對數函數的圖象y?log3xy?log1x 3步驟二:觀(guān)察對數函數y?log2x、y?log3x與y?log1x、y?log1x的圖象特23征,看看它們有那些異同點(diǎn)。

  步驟三:利用計算器或計算機,選取底數a(a?0,且a?1)的若干個(gè)不同的值,

  在同一平面直角坐標系中作出相應對數函數的圖象。觀(guān)察圖象,它們有哪些共同特征?

  步驟四:規納出能體現對數函數的代表性圖象

  步驟五:作指數函數與對數函數圖象的比較2.學(xué)生探究成果

  (1)如圖4—3、4—4較為熟練地用描點(diǎn)法畫(huà)出下列對數函數y?log2x、 y?log1x、 y?log3x、y?log1x的圖象23圖4—3圖4—4 (2)如圖4—5學(xué)生選取底數a=1/4、1/5、1/6、1/10、4、5、6、10,并推薦幾位代表上臺演示‘幾何畫(huà)板’,得到相應對數函數的圖象。由于學(xué)生自己動(dòng)手,加上‘幾何畫(huà)板’的強大作圖功能,學(xué)生非常清楚地看到了底數a是如何影響函數y?logax(a?0,且a?1)圖象的變化。

  圖4—5 (3)有了這種畫(huà)圖感知的過(guò)程以及學(xué)習指數函數的經(jīng)驗,學(xué)生很明確y = loga x (a>1)、y = loga x (0(中部)

高中數學(xué)教學(xué)設計14

  一、學(xué)習目標與任務(wù)

  1、學(xué)習目標描述

  知識目標

  (A)理解和掌握圓錐曲線(xiàn)的第一定義和第二定義,并能應用第一定義和第二定義來(lái)解題。

  (B)了解圓錐曲線(xiàn)與現實(shí)生活中的聯(lián)系,并能初步利用圓錐曲線(xiàn)的知識進(jìn)行知識延伸和知識創(chuàng )新。

  能力目標

  (A)通過(guò)學(xué)生的操作和協(xié)作探討,培養學(xué)生的實(shí)踐能力和分析問(wèn)題、解決問(wèn)題的能力。

  (B)通過(guò)知識的再現培養學(xué)生的創(chuàng )新能力和創(chuàng )新意識。

  (C)專(zhuān)題網(wǎng)站中提供各層次的例題和習題,解決各層次學(xué)生的學(xué)習過(guò)程中的各種的需要,從而培養學(xué)生應用知識的能力。

  德育目標

  讓學(xué)生體會(huì )知識產(chǎn)生的全過(guò)程,培養學(xué)生運動(dòng)變化的辯證唯物主義思想。

  2、學(xué)習內容與學(xué)習任務(wù)說(shuō)明

  本節課的內容是圓錐曲線(xiàn)的第一定義和圓錐曲線(xiàn)的統一定義,以及利用圓錐曲線(xiàn)的定義來(lái)解決軌跡問(wèn)題和最值問(wèn)題。

  學(xué)習重點(diǎn):圓錐曲線(xiàn)的第一定義和統一定義。

  學(xué)習難點(diǎn):圓錐曲線(xiàn)第一定義和統一定義的'應用。

  明確本課的重點(diǎn)和難點(diǎn),以學(xué)習任務(wù)驅動(dòng)為方式,以圓錐曲線(xiàn)定義和定義應用為中心,主動(dòng)操作實(shí)驗、大膽分析問(wèn)題和解決問(wèn)題。

  抓住本節課的重點(diǎn)和難點(diǎn),采取的基于學(xué)科專(zhuān)題網(wǎng)站下的三者結合的教學(xué)模式,突出重點(diǎn)、突破難點(diǎn)。

  充分利用《圓錐曲線(xiàn)》專(zhuān)題網(wǎng)站內的內容,在著(zhù)重學(xué)習內容的基礎上,內延外拓,培養學(xué)生的創(chuàng )新精神和克服困難的信心。

  二、學(xué)習者特征分析

 。ㄕf(shuō)明學(xué)生的學(xué)習特點(diǎn)、學(xué)習習慣、學(xué)習交往特點(diǎn)等)

  l本課的學(xué)習對象為高二下學(xué)期學(xué)生,他們經(jīng)過(guò)近兩年的高中學(xué)習,已經(jīng)有一定的學(xué)習基礎和分析問(wèn)題、解決問(wèn)題的能力,基本的計算機操作較為熟練。

  高二年下學(xué)期學(xué)生由于高考的壓力,他們保持著(zhù)傳統教學(xué)的學(xué)習習慣,在

  l課堂上的主體作用的體現不是太充分,但是如果他們還是樂(lè )于嘗試、勇于探索的。

  高二年的學(xué)生在學(xué)習交往上“個(gè)別化學(xué)習”和“協(xié)作討論學(xué)習”并存,也就是說(shuō)學(xué)生是具有一定的群體性小組交流能力與協(xié)同討論學(xué)習能力的,還是能完成上課時(shí)教師布置的協(xié)作學(xué)習任務(wù)的。

  三、學(xué)習環(huán)境選擇與學(xué)習資源設計

  1.學(xué)習環(huán)境選擇(打√)

 。1)Web教室(√)(2)局域網(wǎng)(3)城域網(wǎng)(4)校園網(wǎng)(√)(5)Internet(√)

 。6)其它

  2、學(xué)習資源類(lèi)型(打√)

 。1)課件(網(wǎng)絡(luò )課件)(√)(2)工具(3)專(zhuān)題學(xué)習網(wǎng)站(√)(4)多媒體資源庫

 。5)案例庫(6)題庫(7)網(wǎng)絡(luò )課程(8)其它

  3、學(xué)習資源內容簡(jiǎn)要說(shuō)明

 。ㄕf(shuō)明名稱(chēng)、網(wǎng)址、主要內容等)

  《圓錐曲線(xiàn)專(zhuān)題網(wǎng)站》:從自然與科技、定義與應用、性質(zhì)與實(shí)踐和創(chuàng )新與未來(lái)四個(gè)方面圍繞圓錐曲線(xiàn)進(jìn)行探討與研究。(IP:192.168.3.134)

  用Flash5、幾何畫(huà)板和Authorware6制作可操作且具有交互性的網(wǎng)絡(luò )課件放在專(zhuān)題網(wǎng)站里。

  四、學(xué)習情境創(chuàng )設

  1、學(xué)習情境類(lèi)型(打√)

 。1)真實(shí)性情境(√)(2)問(wèn)題性情境(√)

 。3)虛擬性情境(√)(4)其它

  2、學(xué)習情境設計

  真實(shí)性情境:用Flash5制作的一系列教學(xué)軟件。用幾何畫(huà)板制作的《圓錐曲線(xiàn)的統一定義》的教學(xué)軟件。

  問(wèn)題性情境:圓錐曲線(xiàn)的截取方法、圓錐曲線(xiàn)的各種定義、典型例題。

  虛擬性情境:Authorware6制作的《圓錐曲線(xiàn)的截取》,模擬曲線(xiàn)截取。

  五、學(xué)習活動(dòng)的組織

  1、自主學(xué)習設計(打√并填寫(xiě)相關(guān)內容)

  (1)拋錨式

  (2)支架式(√)相應內容:圓錐曲線(xiàn)的第一定義和統一定義。

  使用資源:數學(xué)教材、專(zhuān)題網(wǎng)站及專(zhuān)題網(wǎng)站下的多媒體教學(xué)軟件。

  學(xué)生活動(dòng):分析、操作、協(xié)作討論、總結、提交結論。

  教師活動(dòng):?jiǎn)?wèn)題的提出。學(xué)習資源獲取路徑的指導。問(wèn)題解答和咨詢(xún)。

  (3)隨機進(jìn)入式(√)相應內容:圓錐曲線(xiàn)定義的典型應用。

  使用資源:軌跡問(wèn)題、最值問(wèn)題、其它問(wèn)題三種典型例題以及各個(gè)題目的動(dòng)畫(huà)演示和答案。

  學(xué)生活動(dòng):根據自身情況選題、分析題目、協(xié)作討論、解答題目。

  教師活動(dòng):講解例題,總結點(diǎn)評學(xué)生做題過(guò)程中的問(wèn)題。

  (4)其它

  2、協(xié)作學(xué)習設計(打√并填寫(xiě)相關(guān)內容)

 。1)競爭

 。2)伙伴(√)

  相應內容:圓錐曲線(xiàn)的第一定義和統一定義

  使用資源:數學(xué)教材、專(zhuān)題網(wǎng)站及專(zhuān)題網(wǎng)站下的多媒體教學(xué)軟件。

  分組情況:每組三人

  學(xué)生活動(dòng):學(xué)生之間對圓錐曲線(xiàn)的定義展開(kāi)討論,從而達到對定義的理解和掌握。

  教師活動(dòng):?jiǎn)?wèn)題的提出。學(xué)習資源獲取路徑的指導。問(wèn)題解答和咨詢(xún)。

 。3)協(xié)同(√)

  相應內容:圓錐曲線(xiàn)定義的典型應用。

  使用資源:軌跡問(wèn)題、最值問(wèn)題、其它問(wèn)題三種典型例題以及各個(gè)題目的動(dòng)畫(huà)演示和答案。

  分組情況:每組三人。

  學(xué)生活動(dòng):通過(guò)協(xié)作討論區,同學(xué)之間互相配合、互相幫助、各種觀(guān)點(diǎn)互相補充。

  教師活動(dòng):總結點(diǎn)評學(xué)生做題過(guò)程中的問(wèn)題。

 。4)辯論

 。5)角色扮演

 。6)其它

  4、教學(xué)結構流程的設計

  六、學(xué)習評價(jià)設計

  1、測試形式與工具(打√)

 。1)堂上提問(wèn)(√)(2)書(shū)面練習(3)達標測試(4)學(xué)生自主網(wǎng)上測試(√)(5)合作完成作品(6)其它

  2、測試內容

  教師堂上提問(wèn):圓錐曲線(xiàn)的定義、學(xué)生提交的結論的完整性、學(xué)生協(xié)作討論時(shí)的疑問(wèn)、例題講解過(guò)程中問(wèn)題,課堂總結。

  學(xué)生自主網(wǎng)上測試:解決軌跡問(wèn)題、最值問(wèn)題、其它問(wèn)題三種典型題目。

  (附)圓錐曲線(xiàn)專(zhuān)題網(wǎng)站設計分析

  (1)設計思路

  (A)給學(xué)生操作與實(shí)踐的機會(huì ):在每一環(huán)節中建設一個(gè)可供學(xué)生操作的實(shí)驗平臺。

  (B)突出教學(xué)中“主導和主體”的作用:在每一環(huán)節中建設一個(gè)可供師生交流的平臺。

  (C)突出知識的再創(chuàng )新過(guò)程和知識的延伸:如圓錐曲線(xiàn)的作法和知識的創(chuàng )新與應用。

  (D)強調教學(xué)軟件的交互性:如在題目中給出提示的動(dòng)畫(huà)過(guò)程和解答過(guò)程。

  (E)突出和各學(xué)科的聯(lián)系:如斜拋運動(dòng)和行星運動(dòng)等等。

  (F)強調分層次的教學(xué):

  如在知識應用中的配置不同層次的例題和練習:

  (2)網(wǎng)站導航圖

高中數學(xué)教學(xué)設計15

  教學(xué)目標:

 、僬莆諏岛瘮档男再|(zhì)。

 、趹脤岛瘮档男再|(zhì)可以解決:對數的大小比較,求復合函數的定義域、值域及單調性。

 、圩⒅睾瘮邓枷、等價(jià)轉化、分類(lèi)討論等思想的滲透,提高解題能力。

  教學(xué)重點(diǎn)與難點(diǎn):

  對數函數的性質(zhì)的應用。

  教學(xué)過(guò)程設計:

 、睆土曁釂(wèn):對數函數的概念及性質(zhì)。

 、查_(kāi)始正課

  1比較數的大小

  例1比較下列各組數的'大小。

 、舕oga5.1 ,loga5.9 (a>0,a≠1)

 、苐og0.50.6 ,logЛ0.5 ,lnЛ

  師:請同學(xué)們觀(guān)察一下⑴中這兩個(gè)對數有何特征?

  生:這兩個(gè)對數底相等。

  師:那么對于兩個(gè)底相等的對數如何比大小?

  生:可構造一個(gè)以a為底的對數函數,用對數函數的單調性比大小。

  師:對,請敘述一下這道題的解題過(guò)程。

  生:對數函數的單調性取決于底的大。寒0調遞減,所以loga5.1>loga5.9 ;當a>1時(shí),函數y=logax單調遞增,所以loga5.1

  板書(shū):

  解:Ⅰ)當0

  ∵5.1<5.9 loga5.1="">loga5.9

 、)當a>1時(shí),函數y=logax在(0,+∞)上是增函數

  ∵5.1<5.9 ∴loga5.1

  師:請同學(xué)們觀(guān)察一下⑵中這三個(gè)對數有何特征?

  生:這三個(gè)對數底、真數都不相等。

  師:那么對于這三個(gè)對數如何比大小?

  生:找“中間量”,log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,

  log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

  板書(shū):略。

  師:比較對數值的大小常用方法:

 、贅嬙鞂岛瘮,直接利用對數函數的單調性比大;

 、诮栌谩爸虚g量”間接比大;

 、劾脤岛瘮祱D象的位置關(guān)系來(lái)比大小。

  2函數的定義域,值域及單調性。

【高中數學(xué)教學(xué)設計】相關(guān)文章:

高中數學(xué)教學(xué)設計01-17

高中數學(xué)教學(xué)設計06-09

高中數學(xué)教學(xué)設計03-25

高中數學(xué)概念教學(xué)設計07-14

【精】高中數學(xué)教學(xué)設計05-18

2022高中數學(xué)教學(xué)設計高三數學(xué)教學(xué)設計12-22

高中數學(xué)教學(xué)設計(精選15篇)05-09

高中數學(xué)教學(xué)設計精選15篇03-28

高中數學(xué)教學(xué)設計14篇07-02

高中數學(xué)教學(xué)設計15篇07-01